Extension Particle Filtering Algorithm for State and Parameter Estimation in Dynamic Control Process

被引:0
|
作者
Gao Xian-zhong [1 ]
Hou Zhong-xi [1 ]
Ren Bo-tao [1 ]
机构
[1] Natl Univ Def Technol, Coll Aerosp & Mat Engn, Changsha 410073, Hunan, Peoples R China
关键词
Particle Filtering algorithm; Parameters estimation; Important density; Smooth factor;
D O I
10.1109/CCDC.2009.5192156
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Aiming to solve the problem of unknown parameters estimation in nonlinear and/or non-Gaussian dynamic system, Extension Particle Filtering(EPF) algorithm was proposed. EPF algorithm modeled unknown parameters by Gaussian random walk process, regarded unknown parameters in dynamic system as a part of state variations, and then estimated the state variations in extension nonlinear dynamic system by particle filtering algorithm. In order to improve the estimate precision of unknown parameters by utilizing observable information effectively, a new important density was purposed to instead of Bootstrap filter, further more, it avoided transformation about covariance. In order to solve the problem that covariance augmented infinitely with time in Gaussian random walk model, and Kernel smooth factor restrained covariance excessively so as to the values of estimate parameters could not access the values of true parameters sufficiently, the Gradually Reduce(GR) factor was purposed to instead of Kernel factor. At the end of this paper, the effectiveness and availability of purposed algorithm was validated by an exemplum.
引用
收藏
页码:1133 / 1137
页数:5
相关论文
共 50 条
  • [1] Combined parameter and state estimation in particle filtering
    Yang, Xiaojun
    Shi, Kunlin
    Huang, Tao
    Xing, Keyi
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1-7, 2007, : 1614 - +
  • [2] Joint state and parameter estimation in particle filtering and stochastic optimization
    Yang X.
    Xing K.
    Shi K.
    Pan Q.
    [J]. Journal of Control Theory and Applications, 2008, 6 (2): : 215 - 220
  • [3] Joint state and parameter estimation in particle filtering and stochastic optimization
    Xiaojun YANG 1
    2.Xi’an Institute of Electromechanical Information Technology
    3.School of Automation
    [J]. Control Theory and Technology, 2008, (02) : 215 - 220
  • [4] Novel particle filtering algorithms for fixed parameter estimation in dynamic systems
    Míguez, J
    Bugallo, MF
    Djuric, PM
    [J]. ISPA 2005: PROCEEDINGS OF THE 4TH INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS, 2005, : 46 - 51
  • [5] Improved Particle Filtering for State and Parameter Estimation- CSTR Model
    Mansouri, Majdi
    Nounou, Hazem
    Nounou, Mohamed
    [J]. 2014 11TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2014,
  • [6] Constrained particle filtering methods for state estimation of nonlinear process
    Zhao, Zhonggai
    Huang, Biao
    Liu, Fei
    [J]. AICHE JOURNAL, 2014, 60 (06) : 2072 - 2082
  • [7] Application of the Artificial Fish School Algorithm and Particle Filter Algorithm in the Industrial Process Control Particle Filtering Algorithm for Industrial Process Control
    Huang, Zhaoxia
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [8] A PARTICLE FILTERING ALGORITHM FOR PARAMETER ESTIMATION IN REAL-TIME BIOSENSOR ARRAYS
    Gokdemir, Mahsuni
    Vikalo, Haris
    [J]. 2009 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS 2009), 2009, : 118 - 121
  • [9] Particle and Kalman filtering for state estimation and control of DC motors
    Rigatos, Gerasimos G.
    [J]. ISA TRANSACTIONS, 2009, 48 (01) : 62 - 72
  • [10] Convolution particle filtering for parameter estimation in general state-space models
    Campillo, Fabien
    Rossi, Vivien
    [J]. PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 2159 - 2164