Convolution particle filtering for parameter estimation in general state-space models

被引:0
|
作者
Campillo, Fabien [1 ]
Rossi, Vivien [1 ]
机构
[1] INRIA IRISA, F-35042 Rennes, France
关键词
Hidden Markov model; parameter estimation; particle filter; convolution kernels; conditional least squares estimate; maximum likelihood estimate;
D O I
10.1109/CDC.2006.376751
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The state-space modeling of partially observed dynamic systems generally requires estimates of unknown parameters. From a practical point of view, it is relevant in such filtering contexts to simultaneously estimate the unknown states and parameters. Efficient simulation-based methods using convolution particle filters are proposed. The regularization properties of these filters is well suited, given the context of parameter estimation. Firstly the usual non Bayesian statistical estimates are considered: the conditional least squares estimate (CLSE) and the maximum likelihood estimate (MLE). Secondly, in a Bayesian context, a Monte Carlo type method is presented. Finally we present a simulated case study.
引用
收藏
页码:2159 / 2164
页数:6
相关论文
共 50 条
  • [1] Convolution Particle Filter for Parameter Estimation in General State-Space Models
    Campillo, Fabien
    Rossi, Vivien
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2009, 45 (03) : 1063 - 1072
  • [2] Parameter estimation in general state-space models using particle methods
    Doucet, A
    Tadic, VB
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2003, 55 (02) : 409 - 422
  • [3] Parameter estimation in general state-space models using particle methods
    Arnaud Doucet
    Vladislav B. Tadić
    [J]. Annals of the Institute of Statistical Mathematics, 2003, 55 : 409 - 422
  • [4] On Particle Methods for Parameter Estimation in State-Space Models
    Kantas, Nikolas
    Doucet, Arnaud
    Singh, Sumeetpal S.
    Maciejowski, Jan
    Chopin, Nicolas
    [J]. STATISTICAL SCIENCE, 2015, 30 (03) : 328 - 351
  • [5] On-line parameter estimation in general state-space models
    Andrieu, Christophe
    Doucet, Arnaud
    Tadic, Vladislav B.
    [J]. 2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 332 - 337
  • [6] PARTICLE FILTERING FOR MULTIVARIATE STATE-SPACE MODELS
    Djuric, Petar M.
    Bugallo, Monica F.
    [J]. 2012 CONFERENCE RECORD OF THE FORTY SIXTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS (ASILOMAR), 2012, : 373 - 376
  • [7] UNIFORM CONVERGENCE OVER TIME OF A NESTED PARTICLE FILTERING SCHEME FOR RECURSIVE PARAMETER ESTIMATION IN STATE-SPACE MARKOV MODELS
    Crisan, Dan
    Miguez, Joaquin
    [J]. ADVANCES IN APPLIED PROBABILITY, 2017, 49 (04) : 1170 - 1200
  • [8] Parameter estimation in a class of nonlinear state-space models
    Enescu, Mihai
    Koivunen, Visa
    [J]. 2005 IEEE/SP 13TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), VOLS 1 AND 2, 2005, : 193 - 196
  • [9] Sequential parameter learning and filtering in structured autoregressive state-space models
    Raquel Prado
    Hedibert F. Lopes
    [J]. Statistics and Computing, 2013, 23 : 43 - 57
  • [10] Sequential parameter learning and filtering in structured autoregressive state-space models
    Prado, Raquel
    Lopes, Hedibert F.
    [J]. STATISTICS AND COMPUTING, 2013, 23 (01) : 43 - 57