On-line parameter estimation in general state-space models

被引:0
|
作者
Andrieu, Christophe [1 ]
Doucet, Arnaud [1 ]
Tadic, Vladislav B. [1 ]
机构
[1] Univ Bristol, Sch Math, Bristol, Avon, England
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The estimation of static parameters in general non-linear non-Gaussian state-space models is a long-standing problem. This is despite the advent of Sequential Monte Carlo (SMC, aka particle filters) methods, which provide very good approximations to the optimal fitter under weak assumptions. Several algorithms based on SMC have been proposed in the past 10 years to solve the static parameter problem. However all the algorithms we are aware of suffer from the so-called 'degeneracy problem'. We propose here a methodology for point estimation of static parameters which does not suffer from this problem. Our methods take advantage of the fact that many state space models of interest are ergodic and stationary: this allows us to propose contrast functions for the static parameter which can be consistently estimated and optimised using simulation-based methods. Several types of contrast functions are possible but we focus here on the average of a so-called pseudo-likelihood which we maximize using on-line Expectation-Maximization type algorithms. In its basic form the algorithm requires the expression of the invariant distribution of the underlying state process. When the invariant distribution is unknown, we present an alternative which relies on indirect inference techniques.
引用
收藏
页码:332 / 337
页数:6
相关论文
共 50 条
  • [1] On simultaneous on-line state and parameter estimation in non-linear state-space models
    Tulsyan, Aditya
    Huang, Biao
    Gopaluni, R. Bhushan
    Forbes, J. Fraser
    [J]. JOURNAL OF PROCESS CONTROL, 2013, 23 (04) : 516 - 526
  • [2] Convolution Particle Filter for Parameter Estimation in General State-Space Models
    Campillo, Fabien
    Rossi, Vivien
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2009, 45 (03) : 1063 - 1072
  • [3] Parameter estimation in general state-space models using particle methods
    Doucet, A
    Tadic, VB
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2003, 55 (02) : 409 - 422
  • [4] Parameter estimation in general state-space models using particle methods
    Arnaud Doucet
    Vladislav B. Tadić
    [J]. Annals of the Institute of Statistical Mathematics, 2003, 55 : 409 - 422
  • [5] Convolution particle filtering for parameter estimation in general state-space models
    Campillo, Fabien
    Rossi, Vivien
    [J]. PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 2159 - 2164
  • [6] ON-LINE BAYESIAN PARAMETER ESTIMATION IN ELECTROCARDIOGRAM STATE SPACE MODELS
    Suotsalo, Kimmo
    Sarkka, Simo
    [J]. 2018 IEEE 28TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2018,
  • [7] Particle filter as a controlled Markov chain for on-line parameter estimation in general state space models
    Poyiadjis, George
    Singh, Sumeetpal S.
    Doucet, Arnaud
    [J]. 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 2780 - 2783
  • [8] On Particle Methods for Parameter Estimation in State-Space Models
    Kantas, Nikolas
    Doucet, Arnaud
    Singh, Sumeetpal S.
    Maciejowski, Jan
    Chopin, Nicolas
    [J]. STATISTICAL SCIENCE, 2015, 30 (03) : 328 - 351
  • [9] Parameter estimation in a class of nonlinear state-space models
    Enescu, Mihai
    Koivunen, Visa
    [J]. 2005 IEEE/SP 13TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), VOLS 1 AND 2, 2005, : 193 - 196