Convolution Particle Filter for Parameter Estimation in General State-Space Models

被引:48
|
作者
Campillo, Fabien [1 ]
Rossi, Vivien [2 ]
机构
[1] INRIA INRA UMR ASB, Bat 29,2 Pl Pierre Viala, F-34060 Montpellier 02, France
[2] CIRAD, Campus Int Baillarguet, F-34398 Montpellier 5, France
关键词
TRACKING; TARGET;
D O I
10.1109/TAES.2009.5259183
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The state-space modeling of partially observed dynamical systems generally requires estimates of unknown parameters. The dynamic state vector together with the static parameter vector can be considered as an augmented state vector. Classical filtering methods, such as the extended Kalman filter (EKF) and the bootstrap particle filter (PF), fail to estimate the augmented state vector. For these classical filters to handle the augmented state vector, a dynamic noise term should be artificially added to the parameter components or to the deterministic component of the dynamical system. However, this approach degrades the estimation performance of the filters. We propose a variant of the PF based on convolution kernel approximation techniques. This approach is tested on a simulated case study.
引用
收藏
页码:1063 / 1072
页数:10
相关论文
共 50 条
  • [1] Convolution particle filtering for parameter estimation in general state-space models
    Campillo, Fabien
    Rossi, Vivien
    [J]. PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 2159 - 2164
  • [2] Parameter estimation in general state-space models using particle methods
    Doucet, A
    Tadic, VB
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2003, 55 (02) : 409 - 422
  • [3] Parameter estimation in general state-space models using particle methods
    Arnaud Doucet
    Vladislav B. Tadić
    [J]. Annals of the Institute of Statistical Mathematics, 2003, 55 : 409 - 422
  • [4] On Particle Methods for Parameter Estimation in State-Space Models
    Kantas, Nikolas
    Doucet, Arnaud
    Singh, Sumeetpal S.
    Maciejowski, Jan
    Chopin, Nicolas
    [J]. STATISTICAL SCIENCE, 2015, 30 (03) : 328 - 351
  • [5] On-line parameter estimation in general state-space models
    Andrieu, Christophe
    Doucet, Arnaud
    Tadic, Vladislav B.
    [J]. 2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 332 - 337
  • [6] Particle-kernel estimation of the filter density in state-space models
    Crisan, Dan
    Miguez, Joaquin
    [J]. BERNOULLI, 2014, 20 (04) : 1879 - 1929
  • [7] Particle filter as a controlled Markov chain for on-line parameter estimation in general state space models
    Poyiadjis, George
    Singh, Sumeetpal S.
    Doucet, Arnaud
    [J]. 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 2780 - 2783
  • [8] A Kernel Density-Based Particle Filter for State and Time-Varying Parameter Estimation in Nonlinear State-Space Models
    Cheng, Cheng
    Tourneret, Jean-Yves
    [J]. 2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 1664 - 1668
  • [9] Parameter estimation in a class of nonlinear state-space models
    Enescu, Mihai
    Koivunen, Visa
    [J]. 2005 IEEE/SP 13TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), VOLS 1 AND 2, 2005, : 193 - 196
  • [10] H-infinity parameter estimation for state-space models
    Kiriakidis, K
    O'Brien, RT
    [J]. PROCEEDINGS OF THE 2004 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2004, : 2836 - 2839