Convolution particle filtering for parameter estimation in general state-space models

被引:0
|
作者
Campillo, Fabien [1 ]
Rossi, Vivien [1 ]
机构
[1] INRIA IRISA, F-35042 Rennes, France
关键词
Hidden Markov model; parameter estimation; particle filter; convolution kernels; conditional least squares estimate; maximum likelihood estimate;
D O I
10.1109/CDC.2006.376751
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The state-space modeling of partially observed dynamic systems generally requires estimates of unknown parameters. From a practical point of view, it is relevant in such filtering contexts to simultaneously estimate the unknown states and parameters. Efficient simulation-based methods using convolution particle filters are proposed. The regularization properties of these filters is well suited, given the context of parameter estimation. Firstly the usual non Bayesian statistical estimates are considered: the conditional least squares estimate (CLSE) and the maximum likelihood estimate (MLE). Secondly, in a Bayesian context, a Monte Carlo type method is presented. Finally we present a simulated case study.
引用
收藏
页码:2159 / 2164
页数:6
相关论文
共 50 条
  • [41] On simultaneous on-line state and parameter estimation in non-linear state-space models
    Tulsyan, Aditya
    Huang, Biao
    Gopaluni, R. Bhushan
    Forbes, J. Fraser
    [J]. JOURNAL OF PROCESS CONTROL, 2013, 23 (04) : 516 - 526
  • [42] Adaptive kernels in approximate filtering of state-space models
    Dedecius, Kamil
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2017, 31 (06) : 938 - 952
  • [43] From general state-space to VARMAX models
    Casals, J.
    Garcia-Hiernaux, A.
    Jerez, M.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2012, 82 (05) : 924 - 936
  • [44] Efficient computation of the maximum a posteriori path and parameter estimation in integrate-and-fire and more general state-space models
    Koyama, Shinsuke
    Paninski, Liam
    [J]. JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2010, 29 (1-2) : 89 - 105
  • [45] Efficient computation of the maximum a posteriori path and parameter estimation in integrate-and-fire and more general state-space models
    Shinsuke Koyama
    Liam Paninski
    [J]. Journal of Computational Neuroscience, 2010, 29 : 89 - 105
  • [46] Data filtering-based parameter and state estimation algorithms for state-space systems disturbed by coloured noises
    Cui, Ting
    Ding, Feng
    Alsaedi, Ahmed
    Hayat, Tasawar
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2020, 51 (09) : 1669 - 1684
  • [47] Noise Moment and Parameter Estimation of State-Space Model
    Kost, Oliver
    Dunik, Jindrich
    Straka, Ondrej
    [J]. IFAC PAPERSONLINE, 2018, 51 (15): : 891 - 896
  • [48] Particle Filtering: A Priori Estimation of Observational Errors of a State-Space Model with Linear Observation Equation
    Lykou, Rodi
    Tsaklidis, George
    [J]. MATHEMATICS, 2021, 9 (12)
  • [49] A framework for state-space estimation with uncertain models
    Sayed, AH
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (07) : 998 - 1013
  • [50] Stochastic Definition of State-Space Equation for Particle Filtering Algorithms
    Corbetta, Matteo
    Sbarufatti, Claudio
    Manes, Andrea
    Giglio, Marco
    [J]. 2013 PROGNOSTICS AND HEALTH MANAGEMENT CONFERENCE (PHM), 2013, 33 : 1075 - 1080