Joint state and parameter estimation in particle filtering and stochastic optimization

被引:0
|
作者
Xiaojun YANG 1
2.Xi’an Institute of Electromechanical Information Technology
3.School of Automation
机构
基金
中国国家自然科学基金;
关键词
Parameter estimation; Particle filtering; Sequential Monte Carlo; Simultaneous perturbation stochastic approximation; Adaptive estimation;
D O I
暂无
中图分类号
TN713 [滤波技术、滤波器];
学科分类号
080902 ;
摘要
In this paper, an adaptive estimation algorithm is proposed for non-linear dynamic systems with unknown static parameters based on combination of particle filtering and Simultaneous Perturbation Stochastic Approximation (SPSA) technique. The estimations of parameters are obtained by maximum-likelihood estimation and sampling within particle filtering framework, and the SPSA is used for stochastic optimization and to approximate the gradient of the cost function. The proposed algorithm achieves combined estimation of dynamic state and static parameters of nonlinear systems. Simulation result demonstrates the feasibility and efficiency of the proposed algorithm.
引用
收藏
页码:215 / 220
页数:6
相关论文
共 50 条
  • [1] Joint state and parameter estimation in particle filtering and stochastic optimization
    Yang X.
    Xing K.
    Shi K.
    Pan Q.
    [J]. Journal of Control Theory and Applications, 2008, 6 (2): : 215 - 220
  • [2] Combined parameter and state estimation in particle filtering
    Yang, Xiaojun
    Shi, Kunlin
    Huang, Tao
    Xing, Keyi
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1-7, 2007, : 1614 - +
  • [3] Joint state filtering and parameter estimation for linear stochastic time-delay systems
    Basin, Michael
    Shi, Peng
    Calderon-Alvarez, Dario
    [J]. SIGNAL PROCESSING, 2011, 91 (04) : 782 - 792
  • [4] Joint Parameter and State Estimation Based on Marginal Particle Filter and Particle Swarm Optimization
    Ramazan Havangi
    [J]. Circuits, Systems, and Signal Processing, 2018, 37 : 3558 - 3575
  • [5] Joint Parameter and State Estimation Based on Marginal Particle Filter and Particle Swarm Optimization
    Havangi, Ramazan
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (08) : 3558 - 3575
  • [6] Simplex Optimization for Particle Filter Joint State and Parameter Estimation of Dynamic Power Systems
    Ulker, Muhammed Akif
    Uzunoglu, Bahri
    [J]. 17TH IEEE INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES - IEEE EUROCON 2017 CONFERENCE PROCEEDINGS, 2017, : 399 - 404
  • [7] Stochastic Event-Triggered Particle Filtering for State Estimation
    Sadeghzadeh-Nokhodberiz, Nargess
    Davoodi, Mohammadreza
    Meskin, Nader
    [J]. 2016 2ND INTERNATIONAL CONFERENCE ON EVENT-BASED CONTROL, COMMUNICATION, AND SIGNAL PROCESSING (EBCCSP), 2016,
  • [8] Joint state and parameter robust estimation of stochastic nonlinear systems
    Stojanovic, Vladimir
    Nedic, Novak
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2016, 26 (14) : 3058 - 3074
  • [9] Two-Stage Filtering for Joint State-Parameter Estimation
    Santitissadeekorn, Naratip
    Jones, Christopher
    [J]. MONTHLY WEATHER REVIEW, 2015, 143 (06) : 2028 - 2042
  • [10] Improved Particle Filtering for State and Parameter Estimation- CSTR Model
    Mansouri, Majdi
    Nounou, Hazem
    Nounou, Mohamed
    [J]. 2014 11TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2014,