Particle Filtering for State and Parameter Estimation in Gas Turbine Engine Fault Diagnostics

被引:0
|
作者
Daroogheh, Najmeh [1 ]
Meskin, Nader
Khorasani, Khashayar [1 ]
机构
[1] Concordia Univ, Dept Elect & Comp Engn, Montreal, PQ H3G 1M8, Canada
关键词
MODELS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a novel method for a time-varying parameter estimation technique using particle filters is proposed based on the concept of Recursive Prediction Error (RPE). According to the proposed method, a parallel structure for both state and parameter estimation in a nonlinear non-Gaussian system is developed. The performance of the developed framework is evaluated in an application to the gas turbine engine state and health parameters estimation by using different scenarios. The developed method is identified to be applicable for fault diagnosis of an engine system while it is subjected to concurrent and simultaneous loss of effectiveness faults in the system components.
引用
收藏
页码:4343 / 4349
页数:7
相关论文
共 50 条
  • [1] Combined parameter and state estimation in particle filtering
    Yang, Xiaojun
    Shi, Kunlin
    Huang, Tao
    Xing, Keyi
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1-7, 2007, : 1614 - +
  • [2] Smart engine - A gas turbine fault diagnostics and life management tool
    Sampath, Suresh
    Marinai, Luca
    Singh, Riti
    Gulati, Ankush
    [J]. Proceedings of the ASME Turbo Expo 2006, Vol 5, Pts A and B, 2006, : 639 - 648
  • [3] PARAMETER SELECTION FOR MULTIPLE FAULT DIAGNOSTICS OF GAS-TURBINE ENGINES
    URBAN, LA
    [J]. JOURNAL OF ENGINEERING FOR POWER-TRANSACTIONS OF THE ASME, 1975, 97 (02): : 225 - 230
  • [4] Joint state and parameter estimation in particle filtering and stochastic optimization
    Yang X.
    Xing K.
    Shi K.
    Pan Q.
    [J]. Journal of Control Theory and Applications, 2008, 6 (2): : 215 - 220
  • [5] Joint state and parameter estimation in particle filtering and stochastic optimization
    Xiaojun YANG 1
    2.Xi’an Institute of Electromechanical Information Technology
    3.School of Automation
    [J]. Control Theory and Technology, 2008, (02) : 215 - 220
  • [6] System state estimation by particle filtering for fault diagnosis and prognosis
    Cadini, F.
    Avram, D.
    Zio, E.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY, 2010, 224 (O3) : 149 - 158
  • [7] A Strong Tracking Filtering Approach for Health Estimation of Marine Gas Turbine Engine
    Qingcai Yang
    Shuying Li
    Yunpeng Cao
    [J]. Journal of Marine Science and Application, 2019, 18 : 542 - 553
  • [8] A Strong Tracking Filtering Approach for Health Estimation of Marine Gas Turbine Engine
    Yang, Qingcai
    Li, Shuying
    Cao, Yunpeng
    [J]. JOURNAL OF MARINE SCIENCE AND APPLICATION, 2019, 18 (04) : 542 - 553
  • [9] Interacting multiple-models, state augmented Particle Filtering for fault diagnostics
    Compare, Michele
    Baraldi, Piero
    Turati, Pietro
    Zio, Enrico
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 2015, 40 : 12 - 24
  • [10] Prognostics/diagnostics for gas turbine engine bearings
    Orsagh, RF
    Sheldon, J
    Klenke, CJ
    [J]. 2003 IEEE AEROSPACE CONFERENCE PROCEEDINGS, VOLS 1-8, 2003, : 3095 - 3103