Combined state and parameter estimation for Hammerstein systems with time delay using the Kalman filtering

被引:25
|
作者
Ma, Junxia [1 ]
Ding, Feng [1 ]
Xiong, Weili [1 ]
Yang, Erfu [2 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Minist Educ, Key Lab Adv Proc Control Light Ind, Wuxi 214122, Peoples R China
[2] Univ Strathclyde, Strathclyde Space Inst, Space Mechatron Syst Technol Lab, Dept Design Manufacture & Engn Management, Glasgow G1 1XJ, Lanark, Scotland
基金
中国国家自然科学基金;
关键词
Hammerstein state space model; Kalman fllter; least squares; parameter identification; state estimation; SQUARES IDENTIFICATION ALGORITHM; WIENER NONLINEAR-SYSTEMS; NEWTON ITERATION; AUXILIARY MODEL; DYNAMICAL-SYSTEMS; NOISE; CONVERGENCE;
D O I
10.1002/acs.2752
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper discusses the state and parameter estimation problem for a class of Hammerstein state space systems with time delay. Both the process and the measurement noises are considered in the system. On the basis of the observable canonical state space form and the key term separation, a pseudolinear regressive identification model is obtained. For the unknown states in the information vector, the Kalman filter is used to search for the optimal state estimates. A Kalman filterbased least squares iterative and a recursive least squares algorithms are proposed. Extending the information vector to include the latest information terms, which are missed for the time delay, the Kalman filterbased recursive extended least squares algorithm is derived to obtain the estimates of the unknown time delay, parameters, and states. The numerical simulation results are given to illustrate the effectiveness of the proposed algorithms.
引用
收藏
页码:1139 / 1151
页数:13
相关论文
共 50 条
  • [1] Decoupled Parameter Estimation Methods for Hammerstein Systems by Using Filtering Technique
    Wang, Dongqing
    Zhang, Zhen
    Xue, Bingqiang
    [J]. IEEE ACCESS, 2018, 6 : 66612 - 66620
  • [2] Joint state filtering and parameter estimation for linear stochastic time-delay systems
    Basin, Michael
    Shi, Peng
    Calderon-Alvarez, Dario
    [J]. SIGNAL PROCESSING, 2011, 91 (04) : 782 - 792
  • [3] Parameter estimation using a combined variable structure and Kalman filtering approach
    Habibi, Saeid
    [J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2008, 130 (05): : 0510041 - 05100414
  • [4] Joint state and multi-innovation parameter estimation for time-delay linear systems and its convergence based on the Kalman filtering
    Ding, Feng
    Wang, Xuehai
    Mao, Li
    Xu, Ling
    [J]. DIGITAL SIGNAL PROCESSING, 2017, 62 : 211 - 223
  • [5] Parameter Estimation of Hammerstein-Wiener ARMAX Systems Using Unscented Kalman Filter
    Mazaheri, A.
    Mansouri, M.
    Shooredeli, M. A.
    [J]. 2014 SECOND RSI/ISM INTERNATIONAL CONFERENCE ON ROBOTICS AND MECHATRONICS (ICROM), 2014, : 298 - 303
  • [6] Adaptive filtering parameter estimation algorithms for Hammerstein nonlinear systems
    Mao, Yawen
    Ding, Feng
    Alsaedi, Ahmed
    Hayat, Tasawar
    [J]. SIGNAL PROCESSING, 2016, 128 : 417 - 425
  • [7] IDENTIFICATION OF TIME-VARYING SYSTEMS USING COMBINED PARAMETER-ESTIMATION AND FILTERING
    NIEDZWIECKI, M
    [J]. IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1990, 38 (04): : 679 - 686
  • [8] Combined state and parameter estimation for a landslide model using Kalman filter
    Mishra, Mohit
    Besancon, Gildas
    Chambon, Guillaume
    Baillet, Laurent
    [J]. IFAC PAPERSONLINE, 2021, 54 (07): : 304 - 309
  • [9] State filtering and parameter estimation for two-input two-output systems with time delay
    Gu, Ya
    Zhu, Quanmin
    Li, Chuanjiang
    Zhu, Peiyi
    Nouri, Hassan
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2021, 15 (16): : 2053 - 2066
  • [10] A combined observer for robust state estimation and Kalman filtering
    Kwon, SJ
    Chung, WK
    Youm, Y
    [J]. PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 2459 - 2464