Parameter estimation using a combined variable structure and Kalman filtering approach

被引:5
|
作者
Habibi, Saeid [1 ]
机构
[1] McMaster Univ, Dept Mech Engn, Hamilton, ON L8S 4L7, Canada
关键词
parameter estimation; variable structure systems; Kalman filter;
D O I
10.1115/1.2907393
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A method that is often used for parameter estimation is the extended Kalman filter (EKF). EKF is a model-based strategy that implicitly considers the effect of modeling uncertainties. This implicit consideration often leads to the tuning of the filter by trial and error. When formulated for parameter estimation, the "tuned" EKF becomes sensitive to uncertainties in its internal model. The EKF's robustness can be improved by combining it with the recently proposed variable structure filter (VSF) concept. In a combined form, the modeling uncertainties no longer affect stability, but impact the performance and the quality of the estimation process. Furthermore, the VSF concept provides a secondary set of indicators of performance that is in addition to the estimation error and that pertains to the range of parametric uncertainties. As such, the robustness of the combined method and its multiple indicators of performance allow the use of intelligent adaptation for improving the performance of the estimation process. For real-time applications, online neural network adaptation may be used to improve the performance by progressively reducing specific modeling uncertainties in the system. In this paper, a new parameter estimation method that uses concepts associated with the EKF, the VSF, and neural network adaptation is introduced. The performance of this method is considered and discussed for applications that involve parameter estimation such as fault detection.
引用
收藏
页码:0510041 / 05100414
页数:14
相关论文
共 50 条
  • [1] A combined variable structure and Kalman filtering approach
    Habibi, Saeid
    [J]. 2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 1855 - 1862
  • [2] Combined cubature Kalman and smooth variable structure filtering: A robust nonlinear estimation strategy
    Gadsden, S. A.
    Al-Shabi, M.
    Arasaratnam, I.
    Habibi, S. R.
    [J]. SIGNAL PROCESSING, 2014, 96 : 290 - 299
  • [3] Combined state and parameter estimation for Hammerstein systems with time delay using the Kalman filtering
    Ma, Junxia
    Ding, Feng
    Xiong, Weili
    Yang, Erfu
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2017, 31 (08) : 1139 - 1151
  • [4] Combined Quaternion-Based Error State Kalman Filtering and Smooth Variable Structure Filtering for Robust Attitude Estimation
    Youn, Wonkeun
    Gadsden, Stephen Andrew
    [J]. IEEE ACCESS, 2019, 7 : 148989 - 149004
  • [5] Nonglobal Parameter Estimation Using Local Ensemble Kalman Filtering
    Bellsky, Thomas
    Berwald, Jesse
    Mitchell, Lewis
    [J]. MONTHLY WEATHER REVIEW, 2014, 142 (06) : 2150 - 2164
  • [6] Application of the Unscented Kalman Filtering to Parameter Estimation
    Attarian, Adam
    Batzel, Jerry J.
    Matzuka, Brett
    Hien Tran
    [J]. MATHEMATICAL MODELING AND VALIDATION IN PHYSIOLOGY: APPLICATIONS TO THE CARDIOVASCULAR AND RESPIRATORY SYSTEMS, 2013, 2064 : 75 - 88
  • [7] ESTIMATION OF A DISPERSION PARAMETER IN DISCRETE KALMAN FILTERING
    IGLEHART, SC
    LEONDES, CT
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (03) : 262 - 263
  • [8] NPSAT1 parameter estimation using unscented Kalman filtering
    Sekhavat, Pooya
    Gong, Qi
    Ross, I. Michael
    [J]. 2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 5365 - +
  • [9] IMPROVED VEHICLE PARAMETER ESTIMATION USING SENSOR FUSION BY KALMAN FILTERING
    Steinmetz, Erik
    Emardson, Ragne
    Jarlemark, Per
    [J]. XIX IMEKO WORLD CONGRESS: FUNDAMENTAL AND APPLIED METROLOGY, PROCEEDINGS, 2009, : 2429 - 2433
  • [10] Estimation of spatially variable aquifer hydraulic properties using Kalman filtering
    Hantush, MM
    Marino, MA
    [J]. JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1997, 123 (11): : 1027 - 1035