Decoupled Parameter Estimation Methods for Hammerstein Systems by Using Filtering Technique

被引:20
|
作者
Wang, Dongqing [1 ,2 ,3 ]
Zhang, Zhen [1 ]
Xue, Bingqiang [1 ]
机构
[1] Qingdao Univ, Coll Automat & Elect Engn, Qingdao 266071, Peoples R China
[2] Collaborat Innovat Ctr Ecotext Shandong Prov, Qingdao 266071, Peoples R China
[3] Shandong Key Lab Ind Control Technol, Qingdao 266071, Peoples R China
来源
IEEE ACCESS | 2018年 / 6卷
基金
中国国家自然科学基金;
关键词
Filtering; Hammerstein systems; parameter estimation; least squares; MULTIVARIABLE NONLINEAR-SYSTEMS; GRADIENT ITERATIVE ALGORITHM; EXTENDED KALMAN FILTER; IDENTIFICATION METHODS; PARTICLE FILTER; MODEL RECOVERY;
D O I
10.1109/ACCESS.2018.2877622
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The implementation of parameter estimation of Hammerstein systems is much difficult due to the existing parameter products from the nonlinear block and the linear block. This paper directly decomposes the parameter coupling between the nonlinear part and the linear part in a Hammerstein system by using the estimated parameter polynomial of the coupled linear part to filter the Hammerstein system, transforms the Hammerstein system into two forms, and investigates two decoupled parameter estimation methods: the one-step decoupled least squares estimation method and the two-step decoupled least squares estimation method corresponding to the two forms. Furthermore, the computational complexity is compared between the proposed two estimation algorithms. The simulation results show the effectiveness of the proposed two estimation methods with a similar estimation accuracy.
引用
收藏
页码:66612 / 66620
页数:9
相关论文
共 50 条
  • [1] Adaptive filtering parameter estimation algorithms for Hammerstein nonlinear systems
    Mao, Yawen
    Ding, Feng
    Alsaedi, Ahmed
    Hayat, Tasawar
    [J]. SIGNAL PROCESSING, 2016, 128 : 417 - 425
  • [2] Combined state and parameter estimation for Hammerstein systems with time delay using the Kalman filtering
    Ma, Junxia
    Ding, Feng
    Xiong, Weili
    Yang, Erfu
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2017, 31 (08) : 1139 - 1151
  • [3] Parameter estimation for multivariable Hammerstein systems based on the decomposition technique
    Li, Linwei
    Ren, Xuemei
    Lv, Yongfeng
    Wang, Minlin
    [J]. 2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 1661 - 1666
  • [4] Parameter estimation of piecewise Hammerstein systems
    Wang, Feng
    Xing, Keyi
    Xu, Xiaoping
    [J]. TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2014, 36 (08) : 1024 - 1032
  • [5] Filtering based least squares parameter estimation algorithms for Hammerstein nonlinear CARMA systems
    Mao, Yawen
    Ding, Feng
    Pan, Jian
    Ding, Wenfang
    Wan, Xiangkui
    [J]. 2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 574 - 579
  • [6] Parameter Estimation Algorithms for Hammerstein Finite Impulse Response Moving Average Systems Using the Data Filtering Theory
    Ji, Yan
    Cao, Jinde
    [J]. MATHEMATICS, 2022, 10 (03)
  • [7] Modelling and multi-innovation parameter identification for Hammerstein nonlinear state space systems using the filtering technique
    Wang, Xuehai
    Ding, Feng
    [J]. MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2016, 22 (02) : 113 - 140
  • [8] PARAMETER ESTIMATION OF DISCRETE SYSTEMS OF HAMMERSTEIN CLASS
    KAMINSKAS, VA
    [J]. AUTOMATION AND REMOTE CONTROL, 1975, 36 (07) : 1107 - 1113
  • [9] Parameter estimation for Hammerstein control autoregressive systems using differential evolution
    Ammara Mehmood
    Muhammad Saeed Aslam
    Naveed Ishtiaq Chaudhary
    Aneela Zameer
    Muhammad Asif Zahoor Raja
    [J]. Signal, Image and Video Processing, 2018, 12 : 1603 - 1610
  • [10] Parameter estimation for Hammerstein control autoregressive systems using differential evolution
    Mehmood, Ammara
    Aslam, Muhammad Saeed
    Chaudhary, Naveed Ishtiaq
    Zameer, Aneela
    Raja, Muhammad Asif Zahoor
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2018, 12 (08) : 1603 - 1610