Modelling and multi-innovation parameter identification for Hammerstein nonlinear state space systems using the filtering technique

被引:25
|
作者
Wang, Xuehai [1 ,2 ]
Ding, Feng [1 ]
机构
[1] Jiangnan Univ, Key Lab Adv Proc Control Light Ind, Minist Educ, Wuxi, Peoples R China
[2] Henan Univ Urban Construct, Sch Math & Phys, Pingdingshan, Peoples R China
基金
中国国家自然科学基金;
关键词
state filtering; system modelling; nonlinear system; Parameter estimation; computer simulation; LEAST-SQUARES ALGORITHM; PERFORMANCE ANALYSIS; CASCADE MODELS; TIME-DELAY; DYNAMICS; WIENER; NOISE;
D O I
10.1080/13873954.2016.1142455
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This article focuses the problem of the modelling and identification for Hammerstein state space systems with coloured noise. In order to jointly estimate the system parameters and states, a filtering-based multi-innovation stochastic gradient algorithm is developed by combining the filtering technique with the multi-innovation identification theory. The key is that the estimation of the system parameters uses the estimated states, and the estimation of the states uses the preceding parameter estimates. The given examples confirm that the proposed algorithm can provide more accurate parameter estimates than the hierarchical multi-innovation stochastic gradient algorithm.
引用
收藏
页码:113 / 140
页数:28
相关论文
共 50 条
  • [1] Parameter estimation for nonlinear systems by using the data filtering and the multi-innovation identification theory
    Mao, Yawen
    Ding, Feng
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (11) : 1869 - 1885
  • [2] Multi-innovation gradient identification for input nonlinear state space systems
    Wang, X. H.
    Liu, Yanjun
    Ding, Feng
    [J]. IFAC PAPERSONLINE, 2015, 48 (08): : 853 - 858
  • [3] Multi-innovation stochastic gradient identification for Hammerstein controlled autoregressive autoregressive systems based on the filtering technique
    Mao, Yawen
    Ding, Feng
    [J]. NONLINEAR DYNAMICS, 2015, 79 (03) : 1745 - 1755
  • [4] Multi-innovation stochastic gradient identification for Hammerstein controlled autoregressive autoregressive systems based on the filtering technique
    Yawen Mao
    Feng Ding
    [J]. Nonlinear Dynamics, 2015, 79 : 1745 - 1755
  • [5] Multi-innovation parameter and state estimation for multivariable state space systems
    Wang, Xuehai
    Zhu, Fang
    Huang, Fenglin
    [J]. INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2019, 32 (3-4) : 274 - 279
  • [6] Multi-innovation identification method for fractional Hammerstein state space model with colored noise
    Zhang, Qian
    Wang, Hongwei
    Liu, Chunlei
    Ma, Xiaojing
    [J]. CHAOS SOLITONS & FRACTALS, 2023, 173
  • [7] Parameter identification of a class of nonlinear systems based on the multi-innovation identification theory
    Wang, Cheng
    Zhu, Li
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2015, 352 (10): : 4624 - 4637
  • [8] A novel data filtering based multi-innovation stochastic gradient algorithm for Hammerstein nonlinear systems
    Mao, Yawen
    Ding, Feng
    [J]. DIGITAL SIGNAL PROCESSING, 2015, 46 : 215 - 225
  • [9] Multi-innovation gradient parameter estimation algorithms for closed-loop Hammerstein nonlinear systems
    Xu, Ling
    Shen, Bingbing
    Ding, Feng
    Wang, Dongqing
    [J]. 2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 152 - 157
  • [10] Parameter estimation for nonlinear Volterra systems by using the multi-innovation identification theory and tensor decomposition
    Wang, Yanjiao
    Tang, Shihua
    Gu, Xiaobo
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2022, 359 (02): : 1782 - 1802