Parameter estimation for multivariable Hammerstein systems based on the decomposition technique

被引:0
|
作者
Li, Linwei [1 ]
Ren, Xuemei [1 ]
Lv, Yongfeng [1 ]
Wang, Minlin [1 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Parameter identification; multivariable nonlinear systems; filtering technique; hierarchical identification idea; ESTIMATION ALGORITHM; NONLINEAR-SYSTEMS; IDENTIFICATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The focus of this paper is the parameter identification of multivariable Hammerstein controlled autoregressive moving average (for short, CARMA) systems. Based on the internal relationship between the nonlinear submodel and linear subsystem, the multivariable nonlinear CARMA systems are converted into a special identification model which includes the bilinear parameter vector and the other parameter vector. In order to address the above bilinear parameter vector, we construct two the corresponding estimation models in which each identification model is linear to the corresponding parameter vector by using matrix transformation, and developed an adaptive estimation approach to interactively identify the parameter vectors through the usage of the hierarchical identification principle and filtering technique. The conditions of convergence are discussed through the usage of the martingale theorem. The comparative simulation results show that the presented approach produces higher estimation accuracy and faster convergence rate than some publishing identification methods.
引用
收藏
页码:1661 / 1666
页数:6
相关论文
共 50 条
  • [1] Parameter estimation algorithms for multivariable Hammerstein CARMA systems
    Wang, Dongqing
    Ding, Feng
    [J]. INFORMATION SCIENCES, 2016, 355 : 237 - 248
  • [2] Decomposition based recursive least squares parameter estimation for Hammerstein nonlinear controlled autoregressive systems
    Chen, Huibo
    Ding, Feng
    [J]. 2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 2436 - 2441
  • [3] Decoupled Parameter Estimation Methods for Hammerstein Systems by Using Filtering Technique
    Wang, Dongqing
    Zhang, Zhen
    Xue, Bingqiang
    [J]. IEEE ACCESS, 2018, 6 : 66612 - 66620
  • [4] PARAMETER ESTIMATION FOR MULTIVARIABLE SYSTEMS
    GUPTA, RD
    FAIRMAN, FW
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (05) : 546 - 549
  • [5] Parameter estimation of piecewise Hammerstein systems
    Wang, Feng
    Xing, Keyi
    Xu, Xiaoping
    [J]. TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2014, 36 (08) : 1024 - 1032
  • [6] Parameter estimation for Hammerstein CARARMA systems based on the Newton iteration
    Li, Junhong
    [J]. APPLIED MATHEMATICS LETTERS, 2013, 26 (01) : 91 - 96
  • [7] Parameter estimation of Hammerstein systems based on the gravitational search algorithm
    Xu, Shanling
    Li, Junhong
    Gu, Juping
    Hua, Liang
    Shang, Liangliang
    [J]. PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 1708 - 1713
  • [8] PARAMETER ESTIMATION OF DISCRETE SYSTEMS OF HAMMERSTEIN CLASS
    KAMINSKAS, VA
    [J]. AUTOMATION AND REMOTE CONTROL, 1975, 36 (07) : 1107 - 1113
  • [9] An interactive maximum likelihood estimation method for multivariable Hammerstein systems
    Wang, Dongqing
    Fan, Qiuhua
    Ma, Yan
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2020, 357 (17): : 12986 - 13005
  • [10] Separate block-based parameter estimation method for Hammerstein systems
    Zhang, Shuo
    Wang, Dongqing
    Liu, Feng
    [J]. ROYAL SOCIETY OPEN SCIENCE, 2018, 5 (06):