An interactive maximum likelihood estimation method for multivariable Hammerstein systems

被引:44
|
作者
Wang, Dongqing [1 ]
Fan, Qiuhua [1 ]
Ma, Yan [1 ]
机构
[1] Qingdao Univ, Coll Elect Engn, Qingdao 266071, Peoples R China
关键词
SQUARES IDENTIFICATION ALGORITHM; PARAMETER-ESTIMATION ALGORITHM; STOCHASTIC GRADIENT ALGORITHM; NONLINEAR DYNAMIC-SYSTEMS; ITERATIVE ALGORITHM; RECURSIVE-IDENTIFICATION; MODEL RECOVERY; DEAD-ZONE; CONVERGENCE; STATE;
D O I
10.1016/j.jfranklin.2020.09.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For a multivariable Hammerstein controlled autoregressive moving average system (CARMA) system, the identification difficulty is hard to parameterize the system into an quasi auto-regression form to which the standard least square method can apply. By using an interactive maximum likelihood (IML) estimation method, this paper interactively maximizes the logarithmic likelihood function over multiple parameter vectors in a more general model, respectively. The details include: (1) reframe the system into a sum of some bilinear functions about the parameter vectors of the nonlinear part and the linear part; (2) interactively maximize the logarithmic likelihood function over each parameter vector to get their estimates; (3) when updating one parameter vector, substitute other parameter vectors or unknown information vectors by their estimates. The advantage of the IML algorithm is that it overcomes the limit on an autoregressive model form with one parameter vector. The IML method is simple to understand and easy to implement. Numerical simulations indicate that the explored IML algorithm is capable of generating accurate parameter estimates, and easy to implement on-line. (C) 2020 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:12986 / 13005
页数:20
相关论文
共 50 条
  • [1] Maximum likelihood estimation method for dual-rate Hammerstein systems
    Dong-Qing Wang
    Zhen Zhang
    Jin-Yun Yuan
    [J]. International Journal of Control, Automation and Systems, 2017, 15 : 698 - 705
  • [2] Maximum likelihood estimation method for dual-rate Hammerstein systems
    Wang, Dong-Qing
    Zhang, Zhen
    Yuan, Jin-Yun
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2017, 15 (02) : 698 - 705
  • [3] Robust maximum-likelihood estimation of multivariable dynamic systems
    Gibson, S
    Ninness, B
    [J]. AUTOMATICA, 2005, 41 (10) : 1667 - 1682
  • [4] Maximum Likelihood Recursive Least Squares Estimation for Multivariable Systems
    Junhong Li
    Feng Ding
    Ping Jiang
    Daqi Zhu
    [J]. Circuits, Systems, and Signal Processing, 2014, 33 : 2971 - 2986
  • [5] Maximum Likelihood Recursive Least Squares Estimation for Multivariable Systems
    Li, Junhong
    Ding, Feng
    Jiang, Ping
    Zhu, Daqi
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2014, 33 (09) : 2971 - 2986
  • [6] Maximum likelihood gradient-based iterative estimation for multivariable systems
    Xia, Huafeng
    Yang, Yongqing
    Ding, Feng
    Xu, Ling
    Hayat, Tasawar
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2019, 13 (11): : 1683 - 1691
  • [7] Blind maximum likelihood identification of Hammerstein systems
    Vanbeylen, Laurent
    Pintelon, Rik
    Schoukens, Johan
    [J]. AUTOMATICA, 2008, 44 (12) : 3139 - 3146
  • [8] Maximum likelihood forgetting stochastic gradient estimation algorithm for Hammerstein CARARMA systems
    Li, Junhong
    Gu, Juping
    Ma, Weiguo
    Ding, Rui
    [J]. PROCEEDINGS OF THE 2012 24TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2012, : 2533 - 2538
  • [9] INTERACTIVE MAXIMUM-LIKELIHOOD ESTIMATION
    PRAGER, DL
    WELLSTEAD, PE
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1980, 32 (06) : 1005 - 1030
  • [10] A novel APSO-aided maximum likelihood identification method for Hammerstein systems
    Sun, Jianliang
    Liu, Xinggao
    [J]. NONLINEAR DYNAMICS, 2013, 73 (1-2) : 449 - 462