Parameter estimation for multivariable Hammerstein systems based on the decomposition technique

被引:0
|
作者
Li, Linwei [1 ]
Ren, Xuemei [1 ]
Lv, Yongfeng [1 ]
Wang, Minlin [1 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Parameter identification; multivariable nonlinear systems; filtering technique; hierarchical identification idea; ESTIMATION ALGORITHM; NONLINEAR-SYSTEMS; IDENTIFICATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The focus of this paper is the parameter identification of multivariable Hammerstein controlled autoregressive moving average (for short, CARMA) systems. Based on the internal relationship between the nonlinear submodel and linear subsystem, the multivariable nonlinear CARMA systems are converted into a special identification model which includes the bilinear parameter vector and the other parameter vector. In order to address the above bilinear parameter vector, we construct two the corresponding estimation models in which each identification model is linear to the corresponding parameter vector by using matrix transformation, and developed an adaptive estimation approach to interactively identify the parameter vectors through the usage of the hierarchical identification principle and filtering technique. The conditions of convergence are discussed through the usage of the martingale theorem. The comparative simulation results show that the presented approach produces higher estimation accuracy and faster convergence rate than some publishing identification methods.
引用
收藏
页码:1661 / 1666
页数:6
相关论文
共 50 条
  • [21] Parameter Estimation of Hammerstein Model Based on Wavelet Packet
    Li Zhen-Qiang
    Luo Wen-Guang
    Ye Hong-Tao
    Kanae, Shunshoku
    [J]. PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 1765 - 1770
  • [22] Adaptive filtering parameter estimation algorithms for Hammerstein nonlinear systems
    Mao, Yawen
    Ding, Feng
    Alsaedi, Ahmed
    Hayat, Tasawar
    [J]. SIGNAL PROCESSING, 2016, 128 : 417 - 425
  • [23] A recursive parametric estimation algorithm of multivariable nonlinear systems described by Hammerstein mathematical models
    Salhi, Houda
    Kamoun, Samira
    [J]. APPLIED MATHEMATICAL MODELLING, 2015, 39 (16) : 4951 - 4962
  • [24] Auxiliary model based recursive generalized least squares parameter estimation for Hammerstein OEAR systems
    Wang, Dongqing
    Chu, Yanyun
    Yang, Guowei
    Ding, Feng
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (1-2) : 309 - 317
  • [25] Parameter identification based on prescribed estimation error performance for extended Wiener-Hammerstein systems
    Li, Linwei
    Ren, Xuemei
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (02): : 304 - 312
  • [26] Adaptive asymptotic control of multivariable systems based on a one-parameter estimation approach
    Chen, Ci
    Wen, Changyun
    Liu, Zhi
    Xie, Kan
    Zhang, Yun
    Chen, C. L. Philip
    [J]. AUTOMATICA, 2017, 83 : 124 - 132
  • [27] Decomposition-based recursive least-squares parameter estimation algorithm for Wiener-Hammerstein systems with dead-zone nonlinearity
    Li, Linwei
    Ren, Xuemei
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2017, 48 (11) : 2405 - 2414
  • [28] Decomposition-based Gradient Estimation Algorithms for Multivariable Equation-error Systems
    Lu, Xian
    Ding, Feng
    Alsaedi, Ahmed
    Hayat, Tasawar
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2019, 17 (08) : 2037 - 2045
  • [29] Regularized estimation of Hammerstein systems using a decomposition-based iterative instrumental variable method
    Saini, Vikram
    Dewan, Lillie
    [J]. TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2017, 25 (05) : 4311 - 4325
  • [30] Parameter estimation for Hammerstein control autoregressive systems using differential evolution
    Ammara Mehmood
    Muhammad Saeed Aslam
    Naveed Ishtiaq Chaudhary
    Aneela Zameer
    Muhammad Asif Zahoor Raja
    [J]. Signal, Image and Video Processing, 2018, 12 : 1603 - 1610