Combined parameter and state estimation in particle filtering

被引:0
|
作者
Yang, Xiaojun [1 ,2 ]
Shi, Kunlin [1 ]
Huang, Tao [1 ]
Xing, Keyi [2 ]
机构
[1] Xian Inst Electromech Informat Technol, Xian, Peoples R China
[2] Xi An Jiao Tong Univ, Syst Engn Inst, Xian, Peoples R China
关键词
parameter estimation; particle filtering; adaptive estimation; sequential Monte Carlo;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, an adaptive estimation algorithm is proposed for non-linear dynamic systems with unknown static parameters based on combination of particle filtering. The estimates of static parameters are obtained by state samples and maximum-likelihood estimation in particle filtering, and the stochastic approximation is used to approximate the gradient of cost function. The proposed algorithm achieves combined state and parameters estimation. Simulation result demonstrates the efficiency of the algorithm.
引用
收藏
页码:1614 / +
页数:2
相关论文
共 50 条
  • [31] Particle and Kalman filtering for state estimation and control of DC motors
    Rigatos, Gerasimos G.
    [J]. ISA TRANSACTIONS, 2009, 48 (01) : 62 - 72
  • [32] PARTICLE FILTERING APPROACH TO STATE ESTIMATION IN BOOLEAN DYNAMICAL SYSTEMS
    Braga-Neto, Ulisses
    [J]. 2013 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2013, : 81 - 84
  • [33] System state estimation by particle filtering for fault diagnosis and prognosis
    Cadini, F.
    Avram, D.
    Zio, E.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY, 2010, 224 (O3) : 149 - 158
  • [34] Stochastic Event-Triggered Particle Filtering for State Estimation
    Sadeghzadeh-Nokhodberiz, Nargess
    Davoodi, Mohammadreza
    Meskin, Nader
    [J]. 2016 2ND INTERNATIONAL CONFERENCE ON EVENT-BASED CONTROL, COMMUNICATION, AND SIGNAL PROCESSING (EBCCSP), 2016,
  • [35] A closer look to probabilistic state estimation - case: particle filtering
    Tasci, Tugrul
    Oz, C.
    [J]. OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2014, 8 (5-6): : 521 - 534
  • [36] Constrained particle filtering methods for state estimation of nonlinear process
    Zhao, Zhonggai
    Huang, Biao
    Liu, Fei
    [J]. AICHE JOURNAL, 2014, 60 (06) : 2072 - 2082
  • [37] Sequential estimation by combined cost-reference particle and Kalman filtering
    Xu, Shanshan
    Bugallo, Monica E.
    Djuric, Petar M.
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PTS 1-3, PROCEEDINGS, 2007, : 1185 - +
  • [38] A PARTICLE FILTERING ALGORITHM FOR PARAMETER ESTIMATION IN REAL-TIME BIOSENSOR ARRAYS
    Gokdemir, Mahsuni
    Vikalo, Haris
    [J]. 2009 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS 2009), 2009, : 118 - 121
  • [39] Particle filtering for joint symbol and parameter estimation in DS spread spectrum systems
    Punskaya, E
    Doucet, A
    Fitzgerald, WJ
    [J]. 2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL IV, PROCEEDINGS: SIGNAL PROCESSING FOR COMMUNICATIONS SPECIAL SESSIONS, 2003, : 441 - 444
  • [40] Geoacoustic parameter estimation through iteratively particle filtering of solitary data set
    Ren, Qunyan
    Lu, Licheng
    Ma, Li
    Guo, Shengming
    Liao, Tianjun
    [J]. OCEANS 2017 - ABERDEEN, 2017,