Geoacoustic parameter estimation through iteratively particle filtering of solitary data set

被引:0
|
作者
Ren, Qunyan [1 ,2 ]
Lu, Licheng [1 ,2 ]
Ma, Li [1 ,2 ]
Guo, Shengming [1 ,2 ]
Liao, Tianjun [3 ]
机构
[1] Chinese Acad Sci, Inst Acoust, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Key Lab Underwater Acoust Environm, Beijing 100190, Peoples R China
[3] Beijing Inst Syst Engn, State Key Lab Complex Syst Simulat, Beijing 100101, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
INVERSION;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In Bayesian inversion schemes, geoacoustic parameter values and associated uncertainties normally are obtained through sampling approaches, e.g., Metropolis-Hastings (M-H) sampling. This paper presents an attempt to solve this problem through applying a particle filter (PF) to solitary data input as collected in the Yellow Sea, China, 2002. In the experiment, a 38-g explosive charge was used as a broadband source that detonated at an approximate depth of 7 m. The recording system is a moored vertical line array composed of 30 pressure sensors. Comparison between the performances of PF and M-H sampling is first made with numerical tests based on the Yellow Sea environmental model, and then are applied to the real atsea data. Results from both synthetic and real data processing demonstrate the PF is an efficient approach in geoacoustic parameters estimation.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Combined parameter and state estimation in particle filtering
    Yang, Xiaojun
    Shi, Kunlin
    Huang, Tao
    Xing, Keyi
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1-7, 2007, : 1614 - +
  • [2] Iteratively-Linearized Set-Based Parameter Estimation for Uncertain Nonlinear Systems
    Ito, Yuji
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 5861 - 5868
  • [3] Particle filtering for iterative data and phase estimation
    Le Ruyet, Didier
    Bertozzi, Tanya
    Paul, Nicolas
    [J]. 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 4463 - 4466
  • [4] Joint state and parameter estimation in particle filtering and stochastic optimization
    Yang X.
    Xing K.
    Shi K.
    Pan Q.
    [J]. Journal of Control Theory and Applications, 2008, 6 (2): : 215 - 220
  • [5] Joint state and parameter estimation in particle filtering and stochastic optimization
    Xiaojun YANG 1
    2.Xi’an Institute of Electromechanical Information Technology
    3.School of Automation
    [J]. Control Theory and Technology, 2008, (02) : 215 - 220
  • [6] A parameter estimation and filtering method of chaotic system based on particle filter
    Li, Guo-Hui
    Li, Ya-An
    Yang, Hong
    [J]. Binggong Xuebao/Acta Armamentarii, 2012, 33 (12): : 1504 - 1509
  • [7] Improved Particle Filtering for State and Parameter Estimation- CSTR Model
    Mansouri, Majdi
    Nounou, Hazem
    Nounou, Mohamed
    [J]. 2014 11TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2014,
  • [8] Particle filtering within a set-membership approach to state estimation
    Balestrino, A.
    Caiti, A.
    Crisostomi, E.
    [J]. PROCEEDINGS OF 2006 MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1 AND 2, 2006, : 44 - +
  • [9] Novel particle filtering algorithms for fixed parameter estimation in dynamic systems
    Míguez, J
    Bugallo, MF
    Djuric, PM
    [J]. ISPA 2005: PROCEEDINGS OF THE 4TH INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS, 2005, : 46 - 51
  • [10] Nonlinear parameter estimation through particle swarm optimization
    Schwaab, Marcio
    Biscaia, Evaristo Chalbaud, Jr.
    Monteiro, Jose Luiz
    Pinto, Jose Carlos
    [J]. CHEMICAL ENGINEERING SCIENCE, 2008, 63 (06) : 1542 - 1552