PARTICLE FILTERING APPROACH TO STATE ESTIMATION IN BOOLEAN DYNAMICAL SYSTEMS

被引:0
|
作者
Braga-Neto, Ulisses [1 ]
机构
[1] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
关键词
Boolean Dynamical Systems; Boolean Networks; Optimal State Estimation; Particle Filtering; Sequential Monte-Carlo Methods;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Exact optimal state estimation for discrete-time Boolean dynamical systems may become impractical computationally if system dimensionality is large. In this paper, we consider a particle filtering approach to address this problem. The methodology is illustrated through application to state tracking in high-dimensional Boolean network models. The results show that the particle filter can be very accurate under a moderate number of particles. The impact of resampling on performance is also investigated.
引用
收藏
页码:81 / 84
页数:4
相关论文
共 50 条
  • [1] Optimal State Estimation for Boolean Dynamical Systems
    Braga-Neto, Ulisses
    [J]. 2011 CONFERENCE RECORD OF THE FORTY-FIFTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS (ASILOMAR), 2011, : 1050 - 1054
  • [2] JOINT STATE AND PARAMETER ESTIMATION FOR BOOLEAN DYNAMICAL SYSTEMS
    Braga-Neto, Ulisses
    [J]. 2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 704 - 707
  • [3] Optimal State Estimation for Boolean Dynamical Systems using a Boolean Kalman Smoother
    Imani, Mahdi
    Braga-Neto, Ulisses
    [J]. 2015 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2015, : 972 - 976
  • [4] Adaptive Particle Filtering for Fault Detection in Partially-Observed Boolean Dynamical Systems
    Bahadorinejad, Arghavan
    Imani, Mahdi
    Braga-Neto, Ulisses M.
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2020, 17 (04) : 1105 - 1114
  • [5] Bayesian State Estimation in Sensorimotor Systems With Particle Filtering
    Guang, Hui
    Ji, Linhong
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2020, 28 (07) : 1528 - 1538
  • [6] Particle Filtering for State Estimation in Nonlinear Industrial Systems
    Rigatos, Gerasimos G.
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2009, 58 (11) : 3885 - 3900
  • [7] Particle filtering for state estimation in industrial robotic systems
    Rigatos, G. G.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2008, 222 (I6) : 437 - 455
  • [8] Double hybrid Kalman filtering for state estimation of dynamical systems
    Michalski, Jacek
    Kozierski, Piotr
    Zietkiewicz, Joanna
    [J]. COMPUTER APPLICATIONS IN ELECTRICAL ENGINEERING (ZKWE'2019), 2019, 28
  • [9] State Estimation in Linear Dynamical Systems By Partial Update Kalman Filtering
    Yaghoub Pourasad
    Vahid Vahidpour
    Amir Rastegarnia
    Parviz Ghorbanzadeh
    Saeid Sanei
    [J]. Circuits, Systems, and Signal Processing, 2022, 41 : 1188 - 1200
  • [10] State Estimation in Linear Dynamical Systems By Partial Update Kalman Filtering
    Pourasad, Yaghoub
    Vahidpour, Vahid
    Rastegarnia, Amir
    Ghorbanzadeh, Parviz
    Sanei, Saeid
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2022, 41 (02) : 1188 - 1200