The exact solution and integrable properties to the variable-coefficient modified Korteweg-de Vries equation

被引:44
|
作者
Zhang, Yi [1 ]
Li, Jibin [1 ]
Lv, Yi-Neng [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
基金
中国国家自然科学基金;
关键词
Soliton; vc-mKdV equation; Backlund transformation; Lax pairs; Bidirectional wave interaction;
D O I
10.1016/j.aop.2008.04.012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is investigated. With the help of symbolic computation, the N-soliton solution is derived through the Hirota method. Then the bilinear Backlund transformations and Lax pairs are presented. At last, we show some interactions of solitary waves. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:3059 / 3064
页数:6
相关论文
共 50 条
  • [1] THE GENERALIZED WRONSKIAN SOLUTIONS OF THE INTEGRABLE VARIABLE-COEFFICIENT KORTEWEG-DE VRIES EQUATION
    Zhang, Yi
    Zhao, Hai-Qiong
    Ye, Ling-Ya
    Lv, Yi-Neng
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2011, 25 (32): : 4615 - 4626
  • [2] Soliton management for a variable-coefficient modified Korteweg-de Vries equation
    Sun, Zhi-Yuan
    Gao, Yi-Tian
    Liu, Ying
    Yu, Xin
    PHYSICAL REVIEW E, 2011, 84 (02):
  • [3] Periodic and rational solutions of variable-coefficient modified Korteweg-de Vries equation
    Pal, Ritu
    Kaur, Harleen
    Raju, Thokala Soloman
    Kumar, C. N.
    NONLINEAR DYNAMICS, 2017, 89 (01) : 617 - 622
  • [4] Non-linear Dynamics and Exact Solutions for the Variable-Coefficient Modified Korteweg-de Vries Equation
    Liu, Jiangen
    Zhang, Yufeng
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2018, 73 (02): : 143 - 149
  • [6] Interactions of breathers and solitons of a generalized variable-coefficient Korteweg-de Vries-modified Korteweg-de Vries equation with symbolic computation
    Pan Wang
    Bo Tian
    Wen-Jun Liu
    Yan Jiang
    Yue-Shan Xue
    The European Physical Journal D, 2012, 66
  • [7] Interactions of breathers and solitons of a generalized variable-coefficient Korteweg-de Vries-modified Korteweg-de Vries equation with symbolic computation
    Wang, Pan
    Tian, Bo
    Liu, Wen-Jun
    Jiang, Yan
    Xue, Yue-Shan
    EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (09):
  • [8] On the calculation of the timing shifts in the variable-coefficient Korteweg-de Vries equation
    Triki, Houria
    Taha, Thiab R.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 80 (01) : 212 - 222
  • [9] INTEGRABLE PROPERTIES FOR A GENERALIZED NON-ISOSPECTRAL AND VARIABLE-COEFFICIENT KORTEWEG-DE VRIES MODEL
    Xu, Xiao-Ge
    Meng, Xiang-Hua
    Sun, Fu-Wei
    Gao, Yi-Tian
    MODERN PHYSICS LETTERS B, 2010, 24 (10): : 1023 - 1032
  • [10] Soliton propagation and collision in a variable-coefficient coupled Korteweg-de Vries equation
    H. Q. Zhao
    The European Physical Journal B, 2012, 85