The exact solution and integrable properties to the variable-coefficient modified Korteweg-de Vries equation

被引:44
|
作者
Zhang, Yi [1 ]
Li, Jibin [1 ]
Lv, Yi-Neng [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
基金
中国国家自然科学基金;
关键词
Soliton; vc-mKdV equation; Backlund transformation; Lax pairs; Bidirectional wave interaction;
D O I
10.1016/j.aop.2008.04.012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is investigated. With the help of symbolic computation, the N-soliton solution is derived through the Hirota method. Then the bilinear Backlund transformations and Lax pairs are presented. At last, we show some interactions of solitary waves. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:3059 / 3064
页数:6
相关论文
共 50 条
  • [31] Research note on new similarity reductions of a variable-coefficient Korteweg-de Vries equation
    Tian, B
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1997, 52 (05): : 463 - 464
  • [32] Report on the Generalized Tanh Method Extended to a Variable-Coefficient Korteweg-de Vries Equation
    Tian, B.
    Gao, Y.-T.
    Zeitschrift fuer Naturforschung. Section A: Physical Sciences, 52 (05):
  • [34] Periodic and rational solutions of variable-coefficient modified Korteweg–de Vries equation
    Ritu Pal
    Harleen Kaur
    Thokala Soloman Raju
    C. N. Kumar
    Nonlinear Dynamics, 2017, 89 : 617 - 622
  • [35] Exact solutions for modified Korteweg-de Vries equation
    Sarma, Jnanjyoti
    CHAOS SOLITONS & FRACTALS, 2009, 42 (03) : 1599 - 1603
  • [36] Symbolic computation on integrable properties of a variable-coefficient Korteweg-de Vries equation from arterial mechanics and Bose-Einstein condensates
    Li, Juan
    Xu, Tao
    Meng, Xiang-Hua
    Yang, Zai-Chun
    Zhu, Hong-Wu
    Tian, Bo
    PHYSICA SCRIPTA, 2007, 75 (03) : 278 - 284
  • [37] SOLUTONS OF A NONISOSPECTRAL AND VARIABLE-COEFFICIENT KORTEWEG DE VRIES EQUATION
    CHAN, WL
    ZHENG, YK
    LETTERS IN MATHEMATICAL PHYSICS, 1987, 14 (04) : 293 - 301
  • [38] N-Solitonic Solution in Terms of Wronskian Determinant for a Perturbed Variable-Coefficient Korteweg-de Vries Equation
    Cheng Zhang
    Hong-Wu Zhu
    Chun-Yi Zhang
    Zhen-Zhi Yao
    Xing Lü
    Xiang-Hua Meng
    Bo Tian
    International Journal of Theoretical Physics, 2008, 47 : 553 - 560
  • [39] N-Solitonic solution in terms of wronskian determinant for a perturbed variable-coefficient Korteweg-de Vries equation
    Zhang, Cheng
    Zhu, Hong-Wu
    Zhang, Chun-Yi
    Yao, Zhen-Zhi
    Lue, Xing
    Meng, Xiang-Hua
    Tian, Bo
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2008, 47 (02) : 553 - 560
  • [40] EXACT SOLUTION OF MODIFIED KORTEWEG-DE VRIES EQUATION FOR MULTIPLE COLLISIONS OF SOLITONS
    HIROTA, R
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1972, 33 (05) : 1456 - 1458