The exact solution and integrable properties to the variable-coefficient modified Korteweg-de Vries equation

被引:44
|
作者
Zhang, Yi [1 ]
Li, Jibin [1 ]
Lv, Yi-Neng [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
基金
中国国家自然科学基金;
关键词
Soliton; vc-mKdV equation; Backlund transformation; Lax pairs; Bidirectional wave interaction;
D O I
10.1016/j.aop.2008.04.012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is investigated. With the help of symbolic computation, the N-soliton solution is derived through the Hirota method. Then the bilinear Backlund transformations and Lax pairs are presented. At last, we show some interactions of solitary waves. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:3059 / 3064
页数:6
相关论文
共 50 条
  • [21] Wronskian Form of N-Solitonic Solution for a Variable-Coefficient Korteweg-de Vries Equation with Nonuniformities
    Cai Ke-Jie
    Tian Bo
    Zhang Cheng
    Zhang Huan
    Meng Xiang-Hua
    Lue Xing
    Geng Tao
    Liu Wen-Jun
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 50 (05) : 1185 - 1188
  • [22] N-Soliton Solution in Wronskian Form for a Generalized Variable-Coefficient Korteweg-de Vries Equation
    Xu Xiao-Ge
    Meng Xiang-Hua
    Gao Yi-Tian
    CHINESE PHYSICS LETTERS, 2008, 25 (11) : 3890 - 3893
  • [23] Weakly nonlinear waves in water of variable depth: Variable-coefficient Korteweg-de Vries equation
    Demiray, Hilmi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (06) : 1747 - 1755
  • [24] Multiple soliton solutions and other solutions of a variable-coefficient Korteweg-de Vries equation
    Mabenga, C.
    Muatjetjeja, B.
    Motsumi, T. G.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2023, 37 (09):
  • [25] Periodic and decay mode solutions of the generalized variable-coefficient Korteweg-de Vries equation
    Zhang, Yufeng
    Liu, Jiangen
    MODERN PHYSICS LETTERS B, 2019, 33 (20):
  • [27] Exact solutions of the modified Korteweg-de Vries equation
    F. Demontis
    Theoretical and Mathematical Physics, 2011, 168 : 886 - 897
  • [28] Symbolic computation of conservation laws and exact solutions of a coupled variable-coefficient modified Korteweg-de Vries system
    Adem, Abdullahi Rashid
    Khalique, Chaudry Masood
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2016, 56 (04) : 650 - 660
  • [29] Report on the generalized Tanh method extended to a variable-coefficient Korteweg-de Vries equation
    Tian, B
    Gao, YT
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1997, 52 (05): : 462 - 462
  • [30] Solitonic properties for a forced generalized variable-coefficient Korteweg-de Vries equation for the atmospheric blocking phenomenon
    Chai, Jun
    Tian, Bo
    Qu, Qi-Xing
    Zhen, Hui-Ling
    Chai, Han-Peng
    WAVES IN RANDOM AND COMPLEX MEDIA, 2018, 28 (03) : 453 - 467