The exact solution and integrable properties to the variable-coefficient modified Korteweg-de Vries equation

被引:44
|
作者
Zhang, Yi [1 ]
Li, Jibin [1 ]
Lv, Yi-Neng [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
基金
中国国家自然科学基金;
关键词
Soliton; vc-mKdV equation; Backlund transformation; Lax pairs; Bidirectional wave interaction;
D O I
10.1016/j.aop.2008.04.012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is investigated. With the help of symbolic computation, the N-soliton solution is derived through the Hirota method. Then the bilinear Backlund transformations and Lax pairs are presented. At last, we show some interactions of solitary waves. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:3059 / 3064
页数:6
相关论文
共 50 条
  • [41] Integrable properties of a variable-coefficient Korteweg-de Vries model from Bose-Einstein condensates and fluid dynamics
    Zhang, Chun-Yi
    Gao, Yi-Tian
    Meng, Xiang-Hua
    Li, Juan
    Xu, Tao
    Wei, Guang-Mei
    Zhu, Hong-Wu
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (46): : 14353 - 14362
  • [42] Reduction and analytic solutions of a variable-coefficient Korteweg-de Vries equation in a fluid, crystal or plasma
    Chen, Yu-Qi
    Tian, Bo
    Qu, Qi-Xing
    Li, He
    Zhao, Xue-Hui
    Tian, He-Yuan
    Wang, Meng
    MODERN PHYSICS LETTERS B, 2020, 34 (26):
  • [43] Soliton solutions and integrability for the generalized variable-coefficient extended Korteweg-de Vries equation in fluids
    Jiang, Yan
    Tian, Bo
    Liu, Wen-Jun
    Sun, Kun
    Li, Min
    APPLIED MATHEMATICS LETTERS, 2013, 26 (04) : 402 - 407
  • [44] In the Atmosphere and Oceanic Fluids: Scaling Transformations, Bilinear Forms, Backlund Transformations and Solitons for A Generalized Variable-Coefficient Korteweg-de Vries-Modified Korteweg-de Vries Equation
    Gao Xin-yi
    Guo Yong-jiang
    Shan Wen-rui
    Zhou Tian-yu
    Wang Meng
    Yang Dan-yu
    CHINA OCEAN ENGINEERING, 2021, 35 (04) : 518 - 530
  • [45] Solitonic propagation and interaction for a generalized variable-coefficient forced Korteweg-de Vries equation in fluids
    Yu, Xin
    Gao, Yi-Tian
    Sun, Zhi-Yuan
    Liu, Ying
    PHYSICAL REVIEW E, 2011, 83 (05):
  • [46] Wronskian solutions and integrability for a generalized variable-coefficient forced Korteweg-de Vries equation in fluids
    Yu, Xin
    Gao, Yi-Tian
    Sun, Zhi-Yuan
    Liu, Ying
    NONLINEAR DYNAMICS, 2012, 67 (02) : 1023 - 1030
  • [47] An exact solution to the Korteweg-de Vries-Burgers equation
    Feng, ZS
    APPLIED MATHEMATICS LETTERS, 2005, 18 (07) : 733 - 737
  • [48] In the Atmosphere and Oceanic Fluids: Scaling Transformations, Bilinear Forms, B?cklund Transformations and Solitons for A Generalized Variable-Coefficient Korteweg-de Vries-Modified Korteweg-de Vries Equation
    GAO Xin-yi
    GUO Yong-jiang
    SHAN Wen-rui
    ZHOU Tian-yu
    WANG Meng
    YANG Dan-yu
    China Ocean Engineering, 2021, 35 (04) : 518 - 530
  • [49] In the Atmosphere and Oceanic Fluids: Scaling Transformations, Bilinear Forms, Bäcklund Transformations and Solitons for A Generalized Variable-Coefficient Korteweg-de Vries-Modified Korteweg-de Vries Equation
    Xin-yi Gao
    Yong-jiang Guo
    Wen-rui Shan
    Tian-yu Zhou
    Meng Wang
    Dan-yu Yang
    China Ocean Engineering, 2021, 35 : 518 - 530
  • [50] On explicit exact solutions of variable-coefficient time-fractional generalized fifth-order Korteweg-de Vries equation
    Rajesh Kumar Gupta
    Jaskiran Kaur
    The European Physical Journal Plus, 134