Periodic and rational solutions of variable-coefficient modified Korteweg-de Vries equation

被引:11
|
作者
Pal, Ritu [1 ]
Kaur, Harleen [1 ]
Raju, Thokala Soloman [2 ]
Kumar, C. N. [1 ]
机构
[1] Panjab Univ, Dept Phys, Chandigarh 160014, India
[2] Indian Inst Sci Educ & Res IISER Tirupati, Tirupati 517507, Andhra Prades, India
关键词
vc-mKdV; Multivariate transformation; Periodic and rational solutions; MODIFIED KDV EQUATION; ION-ACOUSTIC SOLITON; MKDV EQUATIONS; DEVRIES EQUATION; WAVE-GUIDES; PLASMA; DYNAMICS; MODELS; LASER; TDGL;
D O I
10.1007/s11071-017-3475-4
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
With the aid of multivariate transformation technique, we obtain periodic and rational solutions for variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation. The rational solutions can be obtained as limiting cases of periodic solutions in analogy with the rational solutions of nonlinear Schrdinger equation (NLSE). Further, the effect of variation of parameters on solutions is studied for physically relevant periodic form. Unlike the effect of variation of parameters on solutions of NLSE, where both amplitude and width can be controlled, only path or trajectory of solutions of vc-mKdV equation can be modulated.
引用
收藏
页码:617 / 622
页数:6
相关论文
共 50 条
  • [1] Periodic and rational solutions of variable-coefficient modified Korteweg–de Vries equation
    Ritu Pal
    Harleen Kaur
    Thokala Soloman Raju
    C. N. Kumar
    [J]. Nonlinear Dynamics, 2017, 89 : 617 - 622
  • [2] Periodic and decay mode solutions of the generalized variable-coefficient Korteweg-de Vries equation
    Zhang, Yufeng
    Liu, Jiangen
    [J]. MODERN PHYSICS LETTERS B, 2019, 33 (20):
  • [3] Periodic and rational solutions of modified Korteweg-de Vries equation
    Chowdury, Amdad
    Ankiewicz, Adrian
    Akhmediev, Nail
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2016, 70 (05): : 1 - 7
  • [4] Periodic and rational solutions of modified Korteweg-de Vries equation
    Amdad Chowdury
    Adrian Ankiewicz
    Nail Akhmediev
    [J]. The European Physical Journal D, 2016, 70
  • [5] Soliton management for a variable-coefficient modified Korteweg-de Vries equation
    Sun, Zhi-Yuan
    Gao, Yi-Tian
    Liu, Ying
    Yu, Xin
    [J]. PHYSICAL REVIEW E, 2011, 84 (02):
  • [6] Change of Polarity for Periodic Waves in the Variable-Coefficient Korteweg-de Vries Equation
    Grimshaw, Roger
    [J]. STUDIES IN APPLIED MATHEMATICS, 2015, 134 (03) : 363 - 371
  • [7] Multisoliton and general Wronskian solutions of a variable-coefficient Korteweg-de Vries equation
    Zhao, Hai-qiong
    Zhou, Tong
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (18) : 19074 - 19082
  • [8] Multiple soliton solutions and other solutions of a variable-coefficient Korteweg-de Vries equation
    Mabenga, C.
    Muatjetjeja, B.
    Motsumi, T. G.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2023, 37 (09):
  • [9] Soliton solutions for a variable-coefficient Korteweg-de Vries equation in fluids and plasmas
    Jiang, Yan
    Tian, Bo
    Liu, Wen-Jun
    Sun, Kun
    Qu, Qi-Xing
    [J]. PHYSICA SCRIPTA, 2010, 82 (05)
  • [10] THE GENERALIZED WRONSKIAN SOLUTIONS OF THE INTEGRABLE VARIABLE-COEFFICIENT KORTEWEG-DE VRIES EQUATION
    Zhang, Yi
    Zhao, Hai-Qiong
    Ye, Ling-Ya
    Lv, Yi-Neng
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2011, 25 (32): : 4615 - 4626