Soliton propagation and collision in a variable-coefficient coupled Korteweg-de Vries equation

被引:0
|
作者
H. Q. Zhao
机构
[1] Shanghai Institute of Foreign Trade,Business Information Management School
来源
关键词
Statistical and Nonlinear Physics;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a variable-coefficient coupled Korteweg-de Vries equation is presented and studied by Hirota bilinear method. The multi-soliton solutions expressed in the form of Pfaffians are obtained. We further analyze dynamic characters of these soliton solutions. The appearances of resonant soliton behaviors involving some novel soliton fusion and fission phenomena have been reported.
引用
收藏
相关论文
共 50 条
  • [1] Soliton propagation and collision in a variable-coefficient coupled Korteweg-de Vries equation
    Zhao, H. Q.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (09):
  • [2] Soliton management for a variable-coefficient modified Korteweg-de Vries equation
    Sun, Zhi-Yuan
    Gao, Yi-Tian
    Liu, Ying
    Yu, Xin
    [J]. PHYSICAL REVIEW E, 2011, 84 (02):
  • [3] Soliton solutions for a variable-coefficient Korteweg-de Vries equation in fluids and plasmas
    Jiang, Yan
    Tian, Bo
    Liu, Wen-Jun
    Sun, Kun
    Qu, Qi-Xing
    [J]. PHYSICA SCRIPTA, 2010, 82 (05)
  • [4] Multiple soliton solutions and other solutions of a variable-coefficient Korteweg-de Vries equation
    Mabenga, C.
    Muatjetjeja, B.
    Motsumi, T. G.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2023, 37 (09):
  • [5] Soliton solutions and integrability for the generalized variable-coefficient extended Korteweg-de Vries equation in fluids
    Jiang, Yan
    Tian, Bo
    Liu, Wen-Jun
    Sun, Kun
    Li, Min
    [J]. APPLIED MATHEMATICS LETTERS, 2013, 26 (04) : 402 - 407
  • [6] On the calculation of the timing shifts in the variable-coefficient Korteweg-de Vries equation
    Triki, Houria
    Taha, Thiab R.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 80 (01) : 212 - 222
  • [7] Solitonic propagation and interaction for a generalized variable-coefficient forced Korteweg-de Vries equation in fluids
    Yu, Xin
    Gao, Yi-Tian
    Sun, Zhi-Yuan
    Liu, Ying
    [J]. PHYSICAL REVIEW E, 2011, 83 (05):
  • [8] N-Soliton Solution in Wronskian Form for a Generalized Variable-Coefficient Korteweg-de Vries Equation
    Xu Xiao-Ge
    Meng Xiang-Hua
    Gao Yi-Tian
    [J]. CHINESE PHYSICS LETTERS, 2008, 25 (11) : 3890 - 3893
  • [9] Multisoliton and general Wronskian solutions of a variable-coefficient Korteweg-de Vries equation
    Zhao, Hai-qiong
    Zhou, Tong
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (18) : 19074 - 19082
  • [10] On the Integrability of a Generalized Variable-Coefficient Forced Korteweg-de Vries Equation in Fluids
    Tian, Shou-Fu
    Zhang, Hong-Qing
    [J]. STUDIES IN APPLIED MATHEMATICS, 2014, 132 (03) : 212 - 246