Interactions of breathers and solitons of a generalized variable-coefficient Korteweg-de Vries-modified Korteweg-de Vries equation with symbolic computation

被引:12
|
作者
Wang, Pan [1 ,2 ]
Tian, Bo [1 ,2 ]
Liu, Wen-Jun [1 ,2 ]
Jiang, Yan [1 ,2 ]
Xue, Yue-Shan [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL D | 2012年 / 66卷 / 09期
关键词
SOLITARY WAVES; PAINLEVE PROPERTY; DEVRIES EQUATION; OPTICAL-FIBERS; TRANSFORMATION; MODEL; DYNAMICS; PLASMA;
D O I
10.1140/epjd/e2012-30142-1
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Under investigation in this paper is a generalized variable-coefficient Korteweg-de Vries-modified Korteweg-de Vries equation which describes certain atmospheric blocking phenomenon. Lax pair and infinitely many conservation laws are obtained. With the help of the Hirota method and symbolic computation, the one-, two- and three-soliton solutions are given. Besides, breather and double pole solutions are derived. Propagation characteristics and interactions of breathers and solitons are discussed analytically and graphically. Results also show that the soliton changes its type between depression and elevation periodically. Parabolic-like breather and double pole are depicted. Conditions of the depression and elevation solitons are also given.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Interactions of breathers and solitons of a generalized variable-coefficient Korteweg-de Vries-modified Korteweg-de Vries equation with symbolic computation
    Pan Wang
    Bo Tian
    Wen-Jun Liu
    Yan Jiang
    Yue-Shan Xue
    The European Physical Journal D, 2012, 66
  • [2] In the Atmosphere and Oceanic Fluids: Scaling Transformations, Bilinear Forms, Backlund Transformations and Solitons for A Generalized Variable-Coefficient Korteweg-de Vries-Modified Korteweg-de Vries Equation
    Gao Xin-yi
    Guo Yong-jiang
    Shan Wen-rui
    Zhou Tian-yu
    Wang Meng
    Yang Dan-yu
    CHINA OCEAN ENGINEERING, 2021, 35 (04) : 518 - 530
  • [3] In the Atmosphere and Oceanic Fluids: Scaling Transformations, Bilinear Forms, B?cklund Transformations and Solitons for A Generalized Variable-Coefficient Korteweg-de Vries-Modified Korteweg-de Vries Equation
    GAO Xin-yi
    GUO Yong-jiang
    SHAN Wen-rui
    ZHOU Tian-yu
    WANG Meng
    YANG Dan-yu
    China Ocean Engineering, 2021, 35 (04) : 518 - 530
  • [4] In the Atmosphere and Oceanic Fluids: Scaling Transformations, Bilinear Forms, Bäcklund Transformations and Solitons for A Generalized Variable-Coefficient Korteweg-de Vries-Modified Korteweg-de Vries Equation
    Xin-yi Gao
    Yong-jiang Guo
    Wen-rui Shan
    Tian-yu Zhou
    Meng Wang
    Dan-yu Yang
    China Ocean Engineering, 2021, 35 : 518 - 530
  • [5] On the generation of solitons and breathers in the modified Korteweg-de Vries equation
    Clarke, S
    Grimshaw, R
    Miller, P
    Pelinovsky, E
    Talipova, T
    CHAOS, 2000, 10 (02) : 383 - 392
  • [6] Interactions of breathers and solitons in the extended Korteweg-de Vries equation
    Chow, KW
    Grimshaw, RHJ
    Ding, E
    WAVE MOTION, 2005, 43 (02) : 158 - 166
  • [7] Soliton management for a variable-coefficient modified Korteweg-de Vries equation
    Sun, Zhi-Yuan
    Gao, Yi-Tian
    Liu, Ying
    Yu, Xin
    PHYSICAL REVIEW E, 2011, 84 (02):
  • [8] Deformed Korteweg-De Vries equation with symbolic computation
    Gao, YT
    Tian, B
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2001, 12 (09): : 1335 - 1344
  • [9] DISCRETE SINGULAR CONVOLUTION FOR THE GENERALIZED VARIABLE-COEFFICIENT KORTEWEG-DE VRIES EQUATION
    Mare, Eben
    Mba, Jules Clement
    Pindza, Edson
    QUAESTIONES MATHEMATICAE, 2017, 40 (02) : 225 - 244
  • [10] On the Integrability of a Generalized Variable-Coefficient Forced Korteweg-de Vries Equation in Fluids
    Tian, Shou-Fu
    Zhang, Hong-Qing
    STUDIES IN APPLIED MATHEMATICS, 2014, 132 (03) : 212 - 246