Interactions of breathers and solitons of a generalized variable-coefficient Korteweg-de Vries-modified Korteweg-de Vries equation with symbolic computation

被引:12
|
作者
Wang, Pan [1 ,2 ]
Tian, Bo [1 ,2 ]
Liu, Wen-Jun [1 ,2 ]
Jiang, Yan [1 ,2 ]
Xue, Yue-Shan [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL D | 2012年 / 66卷 / 09期
关键词
SOLITARY WAVES; PAINLEVE PROPERTY; DEVRIES EQUATION; OPTICAL-FIBERS; TRANSFORMATION; MODEL; DYNAMICS; PLASMA;
D O I
10.1140/epjd/e2012-30142-1
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Under investigation in this paper is a generalized variable-coefficient Korteweg-de Vries-modified Korteweg-de Vries equation which describes certain atmospheric blocking phenomenon. Lax pair and infinitely many conservation laws are obtained. With the help of the Hirota method and symbolic computation, the one-, two- and three-soliton solutions are given. Besides, breather and double pole solutions are derived. Propagation characteristics and interactions of breathers and solitons are discussed analytically and graphically. Results also show that the soliton changes its type between depression and elevation periodically. Parabolic-like breather and double pole are depicted. Conditions of the depression and elevation solitons are also given.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Periodic and decay mode solutions of the generalized variable-coefficient Korteweg-de Vries equation
    Zhang, Yufeng
    Liu, Jiangen
    MODERN PHYSICS LETTERS B, 2019, 33 (20):
  • [22] Report on the generalized Tanh method extended to a variable-coefficient Korteweg-de Vries equation
    Tian, B
    Gao, YT
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1997, 52 (05): : 462 - 462
  • [23] Computerized symbolic computation for the cylindrical Korteweg-de Vries equation
    Gao, YT
    Tian, B
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1999, 10 (07): : 1303 - 1316
  • [24] Report on the Generalized Tanh Method Extended to a Variable-Coefficient Korteweg-de Vries Equation
    Tian, B.
    Gao, Y.-T.
    Zeitschrift fuer Naturforschung. Section A: Physical Sciences, 52 (05):
  • [25] ON THE EXISTENCE OF INFINITE CONSERVATION LAWS OF A VARIABLE-COEFFICIENT KORTEWEG-DE VRIES MODEL WITH SYMBOLIC COMPUTATION
    Zhu, Hong-Wu
    Tian, Bo
    MODERN PHYSICS LETTERS B, 2011, 25 (20): : 1683 - 1689
  • [26] KORTEWEG-DE VRIES EQUATION
    SHABAT, AB
    DOKLADY AKADEMII NAUK SSSR, 1973, 211 (06): : 1310 - 1313
  • [27] The exact solution and integrable properties to the variable-coefficient modified Korteweg-de Vries equation
    Zhang, Yi
    Li, Jibin
    Lv, Yi-Neng
    ANNALS OF PHYSICS, 2008, 323 (12) : 3059 - 3064
  • [28] Instability of solitons for the critical generalized Korteweg-de Vries equation
    Martel, Y
    Merle, F
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (01) : 74 - 123
  • [29] KORTEWEG-DE VRIES EQUATION
    TSUTSUMI, M
    PROCEEDINGS OF THE JAPAN ACADEMY, 1975, 51 (06): : 399 - 401
  • [30] Boundary Stabilization of the Korteweg-de Vries Equation and the Korteweg-de Vries-Burgers Equation
    Chaohua Jia
    Bing-Yu Zhang
    Acta Applicandae Mathematicae, 2012, 118 : 25 - 47