A proximal alternating linearization method for nonconvex optimization problems

被引:5
|
作者
Li, Dan [1 ]
Pang, Li-Ping [1 ]
Chen, Shuang [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
来源
OPTIMIZATION METHODS & SOFTWARE | 2014年 / 29卷 / 04期
关键词
nonconvex optimization; nonsmooth optimization; alternating linearization algorithm; proximal point; prox-regular; lower-C-2; function; 90C25; 90C30; 49J52; 49M27; 49M37; VARIABLE-METRIC METHOD; CONVEX FUNCTION; REGULAR FUNCTIONS; BUNDLE METHOD; SUM; DECOMPOSITION; MINIMIZATION; ALGORITHM;
D O I
10.1080/10556788.2013.854358
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we focus on the problems of minimizing the sum of two nonsmooth functions which are possibly nonconvex. These problems arise in many applications of practical interests. We present a proximal alternating linearization algorithm which alternately generates two approximate proximal points of the original objective function. It is proved that the accumulation points of iterations converge to a stationary point of the problem. Numerical experiments validate the theoretical convergence analysis and verify the implementation of the proposed algorithm.
引用
下载
收藏
页码:771 / 785
页数:15
相关论文
共 50 条
  • [1] An alternating linearization bundle method for a class of nonconvex nonsmooth optimization problems
    Tang, Chunming
    Lv, Jinman
    Jian, Jinbao
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [2] An alternating linearization bundle method for a class of nonconvex nonsmooth optimization problems
    Chunming Tang
    Jinman Lv
    Jinbao Jian
    Journal of Inequalities and Applications, 2018
  • [3] An inertial proximal alternating direction method of multipliers for nonconvex optimization
    Chao, M. T.
    Zhang, Y.
    Jian, J. B.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (06) : 1199 - 1217
  • [4] AN ALTERNATING LINEARIZATION BUNDLE METHOD FOR A CLASS OF NONCONVEX OPTIMIZATION PROBLEM WITH INEXACT INFORMATION
    Gao, Hui
    Lv, Jian
    Wang, Xiaoliang
    Pang, Liping
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2021, 17 (02) : 805 - 825
  • [5] A generalized inertial proximal alternating linearized minimization method for nonconvex nonsmooth problems
    Wang, Qingsong
    Han, Deren
    APPLIED NUMERICAL MATHEMATICS, 2023, 189 : 66 - 87
  • [6] Proximal alternating linearized minimization for nonconvex and nonsmooth problems
    Bolte, Jerome
    Sabach, Shoham
    Teboulle, Marc
    MATHEMATICAL PROGRAMMING, 2014, 146 (1-2) : 459 - 494
  • [7] An Alternating Proximal Splitting Method with Global Convergence for Nonconvex Structured Sparsity Optimization
    Zhang, Shubao
    Qian, Hui
    Gong, Xiaojin
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 2330 - 2336
  • [8] Inertial proximal alternating minimization for nonconvex and nonsmooth problems
    Zhang, Yaxuan
    He, Songnian
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [9] Inertial proximal alternating minimization for nonconvex and nonsmooth problems
    Yaxuan Zhang
    Songnian He
    Journal of Inequalities and Applications, 2017
  • [10] Proximal alternating linearized minimization for nonconvex and nonsmooth problems
    Jérôme Bolte
    Shoham Sabach
    Marc Teboulle
    Mathematical Programming, 2014, 146 : 459 - 494