A proximal alternating linearization method for nonconvex optimization problems

被引:5
|
作者
Li, Dan [1 ]
Pang, Li-Ping [1 ]
Chen, Shuang [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
来源
OPTIMIZATION METHODS & SOFTWARE | 2014年 / 29卷 / 04期
关键词
nonconvex optimization; nonsmooth optimization; alternating linearization algorithm; proximal point; prox-regular; lower-C-2; function; 90C25; 90C30; 49J52; 49M27; 49M37; VARIABLE-METRIC METHOD; CONVEX FUNCTION; REGULAR FUNCTIONS; BUNDLE METHOD; SUM; DECOMPOSITION; MINIMIZATION; ALGORITHM;
D O I
10.1080/10556788.2013.854358
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we focus on the problems of minimizing the sum of two nonsmooth functions which are possibly nonconvex. These problems arise in many applications of practical interests. We present a proximal alternating linearization algorithm which alternately generates two approximate proximal points of the original objective function. It is proved that the accumulation points of iterations converge to a stationary point of the problem. Numerical experiments validate the theoretical convergence analysis and verify the implementation of the proposed algorithm.
引用
下载
收藏
页码:771 / 785
页数:15
相关论文
共 50 条
  • [41] A proximal alternating direction method of multipliers for a minimization problem with nonconvex constraints
    Zheng Peng
    Jianli Chen
    Wenxing Zhu
    Journal of Global Optimization, 2015, 62 : 711 - 728
  • [42] Proximal decomposition via alternating linearization
    Kiwiel, KC
    Rosa, CH
    Ruszczynski, A
    SIAM JOURNAL ON OPTIMIZATION, 1999, 9 (03) : 668 - 689
  • [43] Convergence of the proximal bundle algorithm for nonsmooth nonconvex optimization problems
    Monjezi, N. Hoseini
    Nobakhtian, S.
    OPTIMIZATION LETTERS, 2022, 16 (05) : 1495 - 1511
  • [44] A Nonconvex Proximal Bundle Method for Nonsmooth Constrained Optimization
    Shen, Jie
    Guo, Fang-Fang
    Xu, Na
    COMPLEXITY, 2024, 2024
  • [45] A note on the accelerated proximal gradient method for nonconvex optimization
    Wang, Huijuan
    Xu, Hong-Kun
    CARPATHIAN JOURNAL OF MATHEMATICS, 2018, 34 (03) : 449 - 457
  • [46] A Nonconvex Proximal Bundle Method for Nonsmooth Constrained Optimization
    Shen, Jie
    Guo, Fang-Fang
    Xu, Na
    Complexity, 2024, 2024
  • [47] Convergence of the proximal bundle algorithm for nonsmooth nonconvex optimization problems
    N. Hoseini Monjezi
    S. Nobakhtian
    Optimization Letters, 2022, 16 : 1495 - 1511
  • [48] Proximal Bundle Method for Nonsmooth and Nonconvex Multiobjective Optimization
    Makela, Marko M.
    Karmitsa, Napsu
    Wilppu, Outi
    MATHEMATICAL MODELING AND OPTIMIZATION OF COMPLEX STRUCTURES, 2016, 40 : 191 - 204
  • [49] STOCHASTIC ALTERNATING STRUCTURE-ADAPTED PROXIMAL GRADIENT DESCENT METHOD WITH VARIANCE REDUCTION FOR NONCONVEX NONSMOOTH OPTIMIZATION
    Jia, Zehui
    Zhang, Wenxing
    Cai, Xingju
    Han, Deren
    MATHEMATICS OF COMPUTATION, 2024, 93 (348) : 1677 - 1714
  • [50] A proximal alternating linearization method for minimizing the sum of two convex functions
    ZHANG WenXing
    CAI XingJu
    JIA ZeHui
    Science China Mathematics, 2015, 58 (10) : 2225 - 2244