A proximal alternating linearization method for nonconvex optimization problems

被引:5
|
作者
Li, Dan [1 ]
Pang, Li-Ping [1 ]
Chen, Shuang [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
来源
OPTIMIZATION METHODS & SOFTWARE | 2014年 / 29卷 / 04期
关键词
nonconvex optimization; nonsmooth optimization; alternating linearization algorithm; proximal point; prox-regular; lower-C-2; function; 90C25; 90C30; 49J52; 49M27; 49M37; VARIABLE-METRIC METHOD; CONVEX FUNCTION; REGULAR FUNCTIONS; BUNDLE METHOD; SUM; DECOMPOSITION; MINIMIZATION; ALGORITHM;
D O I
10.1080/10556788.2013.854358
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we focus on the problems of minimizing the sum of two nonsmooth functions which are possibly nonconvex. These problems arise in many applications of practical interests. We present a proximal alternating linearization algorithm which alternately generates two approximate proximal points of the original objective function. It is proved that the accumulation points of iterations converge to a stationary point of the problem. Numerical experiments validate the theoretical convergence analysis and verify the implementation of the proposed algorithm.
引用
下载
收藏
页码:771 / 785
页数:15
相关论文
共 50 条
  • [21] General inertial proximal gradient method for a class of nonconvex nonsmooth optimization problems
    Zhongming Wu
    Min Li
    Computational Optimization and Applications, 2019, 73 : 129 - 158
  • [22] A Proximal Augmented Lagrangian Method for Linearly Constrained Nonconvex Composite Optimization Problems
    Melo, Jefferson G.
    Monteiro, Renato D. C.
    Wang, Hairong
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 202 (01) : 388 - 420
  • [23] General inertial proximal gradient method for a class of nonconvex nonsmooth optimization problems
    Wu, Zhongming
    Li, Min
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 73 (01) : 129 - 158
  • [24] A Gauss-Seidel type inertial proximal alternating linearized minimization for a class of nonconvex optimization problems
    Gao, Xue
    Cai, Xingju
    Han, Deren
    JOURNAL OF GLOBAL OPTIMIZATION, 2020, 76 (04) : 863 - 887
  • [25] Inertial Proximal Alternating Linearized Minimization (iPALM) for Nonconvex and Nonsmooth Problems
    Pock, Thomas
    Sabach, Shoham
    SIAM JOURNAL ON IMAGING SCIENCES, 2016, 9 (04): : 1756 - 1787
  • [26] An augmented Lagrangian proximal alternating method for sparse discrete optimization problems
    Teng, Yue
    Yang, Li
    Song, Xiaoliang
    Yu, Bo
    NUMERICAL ALGORITHMS, 2020, 83 (03) : 833 - 866
  • [27] An augmented Lagrangian proximal alternating method for sparse discrete optimization problems
    Yue Teng
    Li Yang
    Xiaoliang Song
    Bo Yu
    Numerical Algorithms, 2020, 83 : 833 - 866
  • [28] Local Linear Convergence of the Alternating Direction Method of Multipliers for Nonconvex Separable Optimization Problems
    Jia, Zehui
    Gao, Xue
    Cai, Xingju
    Han, Deren
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 188 (01) : 1 - 25
  • [29] A REDISTRIBUTED PROXIMAL BUNDLE METHOD FOR NONCONVEX OPTIMIZATION
    Hare, Warren
    Sagastizabal, Claudia
    SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (05) : 2442 - 2473
  • [30] Local Linear Convergence of the Alternating Direction Method of Multipliers for Nonconvex Separable Optimization Problems
    Zehui Jia
    Xue Gao
    Xingju Cai
    Deren Han
    Journal of Optimization Theory and Applications, 2021, 188 : 1 - 25