Local Linear Convergence of the Alternating Direction Method of Multipliers for Nonconvex Separable Optimization Problems

被引:19
|
作者
Jia, Zehui [1 ]
Gao, Xue [2 ]
Cai, Xingju [2 ]
Han, Deren [2 ,3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Dept Informat & Comp Sci, Nanjing 210044, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Key Lab NSLSCS Jiangsu Prov, Nanjing 210023, Peoples R China
[3] Beihang Univ, Beijing Adv Innovat Ctr Big Data & Brain Comp BDB, Sch Math Sci, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear convergence; Alternating direction method of multipliers; Error bound; Nonconvex minimization; MINIMIZATION; ALGORITHMS;
D O I
10.1007/s10957-020-01782-y
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we consider the convergence rate of the alternating direction method of multipliers for solving the nonconvex separable optimization problems. Based on the error bound condition, we prove that the sequence generated by the alternating direction method of multipliers converges locally to a critical point of the nonconvex optimization problem in a linear convergence rate, and the corresponding sequence of the augmented Lagrangian function value converges in a linear convergence rate. We illustrate the analysis by applying the alternating direction method of multipliers to solving the nonconvex quadratic programming problems with simplex constraint, and comparing it with some state-of-the-art algorithms, the proximal gradient algorithm, the proximal gradient algorithm with extrapolation, and the fast iterative shrinkage-thresholding algorithm.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 50 条
  • [1] Local Linear Convergence of the Alternating Direction Method of Multipliers for Nonconvex Separable Optimization Problems
    Zehui Jia
    Xue Gao
    Xingju Cai
    Deren Han
    Journal of Optimization Theory and Applications, 2021, 188 : 1 - 25
  • [2] A Symmetric Alternating Direction Method of Multipliers for Separable Nonconvex Minimization Problems
    Wu, Zhongming
    Li, Min
    Wang, David Z. W.
    Han, Deren
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2017, 34 (06)
  • [3] CONVERGENCE ANALYSIS OF ALTERNATING DIRECTION METHOD OF MULTIPLIERS FOR A FAMILY OF NONCONVEX PROBLEMS
    Hong, Mingyi
    Luo, Zhi-Quan
    Razaviyayn, Meisam
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 3836 - 3840
  • [4] CONVERGENCE ANALYSIS OF ALTERNATING DIRECTION METHOD OF MULTIPLIERS FOR A FAMILY OF NONCONVEX PROBLEMS
    Hong, Mingyi
    Luo, Zhi-Quan
    Razaviyayn, Meisam
    SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (01) : 337 - 364
  • [5] LINEAR CONVERGENCE OF THE ALTERNATING DIRECTION METHOD OF MULTIPLIERS FOR A CLASS OF CONVEX OPTIMIZATION PROBLEMS
    Yang, Wei Hong
    Han, Deren
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (02) : 625 - 640
  • [6] Analysis of the Alternating Direction Method of Multipliers for Nonconvex Problems
    Harwood S.M.
    Operations Research Forum, 2 (1)
  • [7] On the linear convergence of the alternating direction method of multipliers
    Mingyi Hong
    Zhi-Quan Luo
    Mathematical Programming, 2017, 162 : 165 - 199
  • [8] Convergence of Generalized Alternating Direction Method of Multipliers for Nonseparable Nonconvex Objective with Linear Constraints
    Ke GUO
    Xin WANG
    Journal of Mathematical Research with Applications, 2018, 38 (05) : 523 - 540
  • [9] On the linear convergence of the alternating direction method of multipliers
    Hong, Mingyi
    Luo, Zhi-Quan
    MATHEMATICAL PROGRAMMING, 2017, 162 (1-2) : 165 - 199
  • [10] LOCAL LINEAR CONVERGENCE OF THE ALTERNATING DIRECTION METHOD OF MULTIPLIERS FOR QUADRATIC PROGRAMS
    Han, Deren
    Yuan, Xiaoming
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (06) : 3446 - 3457