Local Linear Convergence of the Alternating Direction Method of Multipliers for Nonconvex Separable Optimization Problems

被引:19
|
作者
Jia, Zehui [1 ]
Gao, Xue [2 ]
Cai, Xingju [2 ]
Han, Deren [2 ,3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Dept Informat & Comp Sci, Nanjing 210044, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Key Lab NSLSCS Jiangsu Prov, Nanjing 210023, Peoples R China
[3] Beihang Univ, Beijing Adv Innovat Ctr Big Data & Brain Comp BDB, Sch Math Sci, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear convergence; Alternating direction method of multipliers; Error bound; Nonconvex minimization; MINIMIZATION; ALGORITHMS;
D O I
10.1007/s10957-020-01782-y
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we consider the convergence rate of the alternating direction method of multipliers for solving the nonconvex separable optimization problems. Based on the error bound condition, we prove that the sequence generated by the alternating direction method of multipliers converges locally to a critical point of the nonconvex optimization problem in a linear convergence rate, and the corresponding sequence of the augmented Lagrangian function value converges in a linear convergence rate. We illustrate the analysis by applying the alternating direction method of multipliers to solving the nonconvex quadratic programming problems with simplex constraint, and comparing it with some state-of-the-art algorithms, the proximal gradient algorithm, the proximal gradient algorithm with extrapolation, and the fast iterative shrinkage-thresholding algorithm.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 50 条
  • [21] The Proximal Alternating Direction Method of Multipliers in the Nonconvex Setting: Convergence Analysis and Rates
    Bot, Radu Ioan
    Dang-Khoa Nguyen
    MATHEMATICS OF OPERATIONS RESEARCH, 2020, 45 (02) : 682 - 712
  • [22] An inertial Bregman generalized alternating direction method of multipliers for nonconvex optimization
    Jiawei Xu
    Miantao Chao
    Journal of Applied Mathematics and Computing, 2022, 68 : 1 - 27
  • [23] An inertial Bregman generalized alternating direction method of multipliers for nonconvex optimization
    Xu, Jiawei
    Chao, Miantao
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (03) : 1757 - 1783
  • [24] ALTERNATING DIRECTION METHOD OF MULTIPLIERS FOR LINEAR INVERSE PROBLEMS
    Jiao, Yuling
    Jin, Qinian
    Lu, Xiliang
    Wang, Weijie
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (04) : 2114 - 2137
  • [25] On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers
    Deng, Wei
    Yin, Wotao
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 66 (03) : 889 - 916
  • [26] On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers
    Wei Deng
    Wotao Yin
    Journal of Scientific Computing, 2016, 66 : 889 - 916
  • [27] A convex combined symmetric alternating direction method of multipliers for separable optimization
    Xiaoquan Wang
    Hu Shao
    Ting Wu
    Computational Optimization and Applications, 2025, 90 (3) : 839 - 880
  • [28] Convergence Analysis of Alternating Direction Method of Multipliers for a Class of Separable Convex Programming
    Jia, Zehui
    Guo, Ke
    Cai, Xingju
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [29] On the Convergence of Alternating Direction Lagrangian Methods for Nonconvex Structured Optimization Problems
    Magnusson, Sindri
    Weeraddana, Pradeep Chathuranga
    Rabbat, Michael G.
    Fischione, Carlo
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2016, 3 (03): : 296 - 309
  • [30] Iteratively Linearized Reweighted Alternating Direction Method of Multipliers for a Class of Nonconvex Problems
    Sun, Tao
    Jiang, Hao
    Cheng, Lizhi
    Zhu, Wei
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (20) : 5380 - 5391