Local Linear Convergence of the Alternating Direction Method of Multipliers for Nonconvex Separable Optimization Problems

被引:19
|
作者
Jia, Zehui [1 ]
Gao, Xue [2 ]
Cai, Xingju [2 ]
Han, Deren [2 ,3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Dept Informat & Comp Sci, Nanjing 210044, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Key Lab NSLSCS Jiangsu Prov, Nanjing 210023, Peoples R China
[3] Beihang Univ, Beijing Adv Innovat Ctr Big Data & Brain Comp BDB, Sch Math Sci, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear convergence; Alternating direction method of multipliers; Error bound; Nonconvex minimization; MINIMIZATION; ALGORITHMS;
D O I
10.1007/s10957-020-01782-y
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we consider the convergence rate of the alternating direction method of multipliers for solving the nonconvex separable optimization problems. Based on the error bound condition, we prove that the sequence generated by the alternating direction method of multipliers converges locally to a critical point of the nonconvex optimization problem in a linear convergence rate, and the corresponding sequence of the augmented Lagrangian function value converges in a linear convergence rate. We illustrate the analysis by applying the alternating direction method of multipliers to solving the nonconvex quadratic programming problems with simplex constraint, and comparing it with some state-of-the-art algorithms, the proximal gradient algorithm, the proximal gradient algorithm with extrapolation, and the fast iterative shrinkage-thresholding algorithm.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 50 条
  • [41] Inexact alternating direction methods of multipliers for separable convex optimization
    William W. Hager
    Hongchao Zhang
    Computational Optimization and Applications, 2019, 73 : 201 - 235
  • [42] A new alternating direction method for linearly constrained nonconvex optimization problems
    Wang, X. Y.
    Li, S. J.
    Kou, X. P.
    Zhang, Q. F.
    JOURNAL OF GLOBAL OPTIMIZATION, 2015, 62 (04) : 695 - 709
  • [43] A new alternating direction method for linearly constrained nonconvex optimization problems
    X. Y. Wang
    S. J. Li
    X. P. Kou
    Q. F. Zhang
    Journal of Global Optimization, 2015, 62 : 695 - 709
  • [44] Convergence Rate Analysis for the Alternating Direction Method of Multipliers with a Substitution Procedure for Separable Convex Programming
    He, Bingsheng
    Tao, Min
    Yuan, Xiaoming
    MATHEMATICS OF OPERATIONS RESEARCH, 2017, 42 (03) : 662 - 691
  • [45] Relaxing Alternating Direction Method of Multipliers (ADMM) for Linear Inverse Problems
    Wu, Zehui
    Lu, Shuai
    NEW TRENDS IN PARAMETER IDENTIFICATION FOR MATHEMATICAL MODELS, 2018, : 317 - 345
  • [46] Linear Convergence Rates for Variants of the Alternating Direction Method of Multipliers in Smooth Cases
    Pauline Tan
    Journal of Optimization Theory and Applications, 2018, 176 : 377 - 398
  • [47] Local Convergence Properties of Douglas-Rachford and Alternating Direction Method of Multipliers
    Liang, Jingwei
    Fadili, Jalal
    Peyre, Gabriel
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 172 (03) : 874 - 913
  • [48] Linear Convergence Rates for Variants of the Alternating Direction Method of Multipliers in Smooth Cases
    Tan, Pauline
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 176 (02) : 377 - 398
  • [49] Linear Rate Convergence of the Alternating Direction Method of Multipliers for Convex Composite Programming
    Han, Deren
    Sun, Defeng
    Zhang, Liwei
    MATHEMATICS OF OPERATIONS RESEARCH, 2018, 43 (02) : 622 - 637
  • [50] Alternating Direction Method of Multipliers for Separable Convex Optimization of Real Functions in Complex Variables
    Li, Lu
    Wang, Xingyu
    Wang, Guoqiang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015