A proximal alternating linearization method for nonconvex optimization problems

被引:5
|
作者
Li, Dan [1 ]
Pang, Li-Ping [1 ]
Chen, Shuang [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
来源
OPTIMIZATION METHODS & SOFTWARE | 2014年 / 29卷 / 04期
关键词
nonconvex optimization; nonsmooth optimization; alternating linearization algorithm; proximal point; prox-regular; lower-C-2; function; 90C25; 90C30; 49J52; 49M27; 49M37; VARIABLE-METRIC METHOD; CONVEX FUNCTION; REGULAR FUNCTIONS; BUNDLE METHOD; SUM; DECOMPOSITION; MINIMIZATION; ALGORITHM;
D O I
10.1080/10556788.2013.854358
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we focus on the problems of minimizing the sum of two nonsmooth functions which are possibly nonconvex. These problems arise in many applications of practical interests. We present a proximal alternating linearization algorithm which alternately generates two approximate proximal points of the original objective function. It is proved that the accumulation points of iterations converge to a stationary point of the problem. Numerical experiments validate the theoretical convergence analysis and verify the implementation of the proposed algorithm.
引用
下载
收藏
页码:771 / 785
页数:15
相关论文
共 50 条
  • [31] A semi-Bregman proximal alternating method for a class of nonconvex problems: local and global convergence analysis
    Cohen, Eyal
    Luke, D. Russell
    Pinta, Titus
    Sabach, Shoham
    Teboulle, Marc
    JOURNAL OF GLOBAL OPTIMIZATION, 2024, 89 (01) : 33 - 55
  • [32] A semi-Bregman proximal alternating method for a class of nonconvex problems: local and global convergence analysis
    Eyal Cohen
    D. Russell Luke
    Titus Pinta
    Shoham Sabach
    Marc Teboulle
    Journal of Global Optimization, 2024, 89 : 33 - 55
  • [33] On the Convergence of an Alternating Direction Penalty Method for Nonconvex Problems
    Magnusson, S.
    Weeraddana, P. C.
    Rabbat, M. G.
    Fischione, C.
    CONFERENCE RECORD OF THE 2014 FORTY-EIGHTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2014, : 793 - 797
  • [34] Analysis of the Alternating Direction Method of Multipliers for Nonconvex Problems
    Harwood S.M.
    Operations Research Forum, 2 (1)
  • [35] An Alternating Augmented Lagrangian method for constrained nonconvex optimization
    Galvan, G.
    Lapucci, M.
    Levato, T.
    Sciandrone, M.
    OPTIMIZATION METHODS & SOFTWARE, 2020, 35 (03): : 502 - 520
  • [36] Convergent Nested Alternating Minimization Algorithms for Nonconvex Optimization Problems
    Gur, Eyal
    Sabach, Shoham
    Shtern, Shimrit
    MATHEMATICS OF OPERATIONS RESEARCH, 2023, 48 (01) : 53 - 77
  • [37] A proximal alternating direction method of multipliers for a minimization problem with nonconvex constraints
    Peng, Zheng
    Chen, Jianli
    Zhu, Wenxing
    JOURNAL OF GLOBAL OPTIMIZATION, 2015, 62 (04) : 711 - 728
  • [38] Some accelerated alternating proximal gradient algorithms for a class of nonconvex nonsmooth problems
    Yang, Xin
    Xu, Lingling
    JOURNAL OF GLOBAL OPTIMIZATION, 2023, 87 (2-4) : 939 - 964
  • [39] Some accelerated alternating proximal gradient algorithms for a class of nonconvex nonsmooth problems
    Xin Yang
    Lingling Xu
    Journal of Global Optimization, 2023, 87 : 939 - 964
  • [40] A PROXIMAL ALTERNATING DIRECTION METHOD OF MULTIPLIER FOR LINEARLY CONSTRAINED NONCONVEX MINIMIZATION
    Zhang, Jiawei
    Luo, Zhi-Quan
    SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (03) : 2272 - 2302