AN ALTERNATING LINEARIZATION BUNDLE METHOD FOR A CLASS OF NONCONVEX OPTIMIZATION PROBLEM WITH INEXACT INFORMATION

被引:3
|
作者
Gao, Hui [1 ,2 ]
Lv, Jian [3 ]
Wang, Xiaoliang [1 ]
Pang, Liping [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
[2] Dalian Ocean Univ, Sch Informat Engn, Dalian 116024, Peoples R China
[3] Zhejiang Univ Finance & Econ, Sch Finance, Hangzhou 310018, Peoples R China
关键词
Bundle method; inexact oracle; alternating linearization; local convexification; global convergence; MINIMIZATION;
D O I
10.3934/jimo.2019135
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose an alternating linearization bundle method for minimizing the sum of a nonconvex function and a convex function. The convex function is assumed to be "simple" in the sense that finding its proximal-like point is relatively easy. The nonconvex function is known through oracles which provide inexact information. The errors in function values and subgradient evaluations might be unknown, but are bounded by universal constants. We examine an alternating linearization bundle method in this setting and obtain reasonable convergence properties. Numerical results show the good performance of the method.
引用
下载
收藏
页码:805 / 825
页数:21
相关论文
共 50 条
  • [1] An alternating linearization bundle method for a class of nonconvex nonsmooth optimization problems
    Tang, Chunming
    Lv, Jinman
    Jian, Jinbao
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [2] An alternating linearization bundle method for a class of nonconvex nonsmooth optimization problems
    Chunming Tang
    Jinman Lv
    Jinbao Jian
    Journal of Inequalities and Applications, 2018
  • [3] A proximal bundle method for constrained nonsmooth nonconvex optimization with inexact information
    Lv, Jian
    Pang, Li-Ping
    Meng, Fan-Yun
    JOURNAL OF GLOBAL OPTIMIZATION, 2018, 70 (03) : 517 - 549
  • [4] A proximal bundle method for constrained nonsmooth nonconvex optimization with inexact information
    Jian Lv
    Li-Ping Pang
    Fan-Yun Meng
    Journal of Global Optimization, 2018, 70 : 517 - 549
  • [5] An Adaptive Proximal Bundle Method with Inexact Oracles for a Class of Nonconvex and Nonsmooth Composite Optimization
    Wang, Xiaoliang
    Pang, Liping
    Wu, Qi
    Zhang, Mingkun
    MATHEMATICS, 2021, 9 (08)
  • [6] A proximal alternating linearization method for nonconvex optimization problems
    Li, Dan
    Pang, Li-Ping
    Chen, Shuang
    OPTIMIZATION METHODS & SOFTWARE, 2014, 29 (04): : 771 - 785
  • [7] A proximal bundle method for nonsmooth nonconvex functions with inexact information
    Hare, W.
    Sagastizabal, C.
    Solodov, M.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 63 (01) : 1 - 28
  • [8] A proximal bundle method for nonsmooth nonconvex functions with inexact information
    W. Hare
    C. Sagastizábal
    M. Solodov
    Computational Optimization and Applications, 2016, 63 : 1 - 28
  • [9] A Generalized Alternating Linearization Bundle Method for Structured Convex Optimization with Inexact First-Order Oracles
    Tang, Chunming
    Li, Yanni
    Dong, Xiaoxia
    He, Bo
    ALGORITHMS, 2020, 13 (04)
  • [10] A REDISTRIBUTED PROXIMAL BUNDLE METHOD FOR NONSMOOTH NONCONVEX FUNCTIONS WITH INEXACT INFORMATION
    Huang, M. I. N. G.
    Niu, Hui-min
    Lin, Si-da
    Yin, Zi-ran
    Yuan, Jin-long
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (12) : 8691 - 8708