AN ALTERNATING LINEARIZATION BUNDLE METHOD FOR A CLASS OF NONCONVEX OPTIMIZATION PROBLEM WITH INEXACT INFORMATION

被引:3
|
作者
Gao, Hui [1 ,2 ]
Lv, Jian [3 ]
Wang, Xiaoliang [1 ]
Pang, Liping [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
[2] Dalian Ocean Univ, Sch Informat Engn, Dalian 116024, Peoples R China
[3] Zhejiang Univ Finance & Econ, Sch Finance, Hangzhou 310018, Peoples R China
关键词
Bundle method; inexact oracle; alternating linearization; local convexification; global convergence; MINIMIZATION;
D O I
10.3934/jimo.2019135
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose an alternating linearization bundle method for minimizing the sum of a nonconvex function and a convex function. The convex function is assumed to be "simple" in the sense that finding its proximal-like point is relatively easy. The nonconvex function is known through oracles which provide inexact information. The errors in function values and subgradient evaluations might be unknown, but are bounded by universal constants. We examine an alternating linearization bundle method in this setting and obtain reasonable convergence properties. Numerical results show the good performance of the method.
引用
下载
收藏
页码:805 / 825
页数:21
相关论文
共 50 条
  • [21] An inexact multiple proximal bundle algorithm for nonsmooth nonconvex multiobjective optimization problems
    N. Hoseini Monjezi
    S. Nobakhtian
    Annals of Operations Research, 2022, 311 : 1123 - 1154
  • [22] Nonconvex bundle method with application to a delamination problem
    Dao, Minh N.
    Gwinner, Joachim
    Noll, Dominikus
    Ovcharova, Nina
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 65 (01) : 173 - 203
  • [23] Nonconvex bundle method with application to a delamination problem
    Minh N. Dao
    Joachim Gwinner
    Dominikus Noll
    Nina Ovcharova
    Computational Optimization and Applications, 2016, 65 : 173 - 203
  • [24] PROXIMAL DECOMPOSITION OF CONVEX OPTIMIZATION VIA AN ALTERNATING LINEARIZATION ALGORITHM WITH INEXACT ORACLES
    Huang, Ming
    He, Yue
    Qiao, Ping-ping
    Lin, Si-da
    Li, Dan
    Yang, Yang
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2024, 20 (11) : 3355 - 3372
  • [25] Bundle Method for Nonconvex Nonsmooth Constrained Optimization
    Minh Ngoc Dao
    JOURNAL OF CONVEX ANALYSIS, 2015, 22 (04) : 1061 - 1090
  • [26] A REDISTRIBUTED PROXIMAL BUNDLE METHOD FOR NONCONVEX OPTIMIZATION
    Hare, Warren
    Sagastizabal, Claudia
    SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (05) : 2442 - 2473
  • [27] A proximal bundle method-based algorithm with penalty strategy and inexact oracles for constrained nonsmooth nonconvex optimization
    Wang, Xiaoliang
    Pang, Liping
    Xiao, Xiantao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 422
  • [28] A Class of Alternating Linearization Algorithms for Nonsmooth Convex Optimization
    Dan Li
    Jie Shen
    Yuan Lu
    Li-Ping Pang
    Zun-Quan Xia
    Acta Mathematicae Applicatae Sinica, English Series, 2019, 35 : 435 - 443
  • [29] A Class of Alternating Linearization Algorithms for Nonsmooth Convex Optimization
    Li, Dan
    Shen, Jie
    Lu, Yuan
    Pang, Li-Ping
    Xia, Zun-Quan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2019, 35 (02): : 435 - 443
  • [30] Alternating direction method of multipliers for a class of nonconvex bilinear optimization: convergence analysis and applications
    Davood Hajinezhad
    Qingjiang Shi
    Journal of Global Optimization, 2018, 70 : 261 - 288