Inertial proximal alternating minimization for nonconvex and nonsmooth problems

被引:2
|
作者
Zhang, Yaxuan [1 ]
He, Songnian [1 ]
机构
[1] Civil Aviat Univ China, Coll Sci, Tianjin 300300, Peoples R China
基金
中国国家自然科学基金;
关键词
nonconvex nonsmooth optimization; proximal alternating minimization; inertial; Kurdyka-Lojasiewicz inequality; convergence; VARIATIONAL INEQUALITY; HILBERT-SPACES; ALGORITHM; OPTIMIZATION;
D O I
10.1186/s13660-017-1504-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the minimization problem of the type L(x, y) = f(x) + R(x, y) + g(y), where f and g are both nonconvex nonsmooth functions, and R is a smooth function we can choose. We present a proximal alternating minimization algorithm with inertial effect. We obtain the convergence by constructing a key function H that guarantees a sufficient decrease property of the iterates. In fact, we prove that if H satisfies the Kurdyka-Lojasiewicz inequality, then every bounded sequence generated by the algorithm converges strongly to a critical point of L.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Inertial proximal alternating minimization for nonconvex and nonsmooth problems
    Yaxuan Zhang
    Songnian He
    [J]. Journal of Inequalities and Applications, 2017
  • [2] Inertial Proximal Alternating Linearized Minimization (iPALM) for Nonconvex and Nonsmooth Problems
    Pock, Thomas
    Sabach, Shoham
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2016, 9 (04): : 1756 - 1787
  • [3] A generalized inertial proximal alternating linearized minimization method for nonconvex nonsmooth problems
    Wang, Qingsong
    Han, Deren
    [J]. APPLIED NUMERICAL MATHEMATICS, 2023, 189 : 66 - 87
  • [4] Proximal alternating linearized minimization for nonconvex and nonsmooth problems
    Bolte, Jerome
    Sabach, Shoham
    Teboulle, Marc
    [J]. MATHEMATICAL PROGRAMMING, 2014, 146 (1-2) : 459 - 494
  • [5] Proximal alternating linearized minimization for nonconvex and nonsmooth problems
    Jérôme Bolte
    Shoham Sabach
    Marc Teboulle
    [J]. Mathematical Programming, 2014, 146 : 459 - 494
  • [6] An inertial alternating minimization with Bregman distance for a class of nonconvex and nonsmooth problems
    Miantao Chao
    Feifan Nong
    Meiyu Zhao
    [J]. Journal of Applied Mathematics and Computing, 2023, 69 : 1559 - 1581
  • [7] An inertial alternating minimization with Bregman distance for a class of nonconvex and nonsmooth problems
    Chao, Miantao
    Nong, Feifan
    Zhao, Meiyu
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (02) : 1559 - 1581
  • [8] A Stochastic Proximal Alternating Minimization for Nonsmooth and Nonconvex
    Driggs, Derek
    Tang, Junqi
    Liang, Jingwei
    Davies, Mike
    Schonlieb, Carola-Bibiane
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2021, 14 (04): : 1932 - 1970
  • [9] A stochastic two-step inertial Bregman proximal alternating linearized minimization algorithm for nonconvex and nonsmooth problems
    Guo, Chenzheng
    Zhao, Jing
    Dong, Qiao-Li
    [J]. NUMERICAL ALGORITHMS, 2024, 97 (01) : 51 - 100
  • [10] A stochastic two-step inertial Bregman proximal alternating linearized minimization algorithm for nonconvex and nonsmooth problems
    Guo, Chenzheng
    Zhao, Jing
    Dong, Qiao-Li
    [J]. arXiv, 2023,