Inertial proximal alternating minimization for nonconvex and nonsmooth problems

被引:2
|
作者
Zhang, Yaxuan [1 ]
He, Songnian [1 ]
机构
[1] Civil Aviat Univ China, Coll Sci, Tianjin 300300, Peoples R China
基金
中国国家自然科学基金;
关键词
nonconvex nonsmooth optimization; proximal alternating minimization; inertial; Kurdyka-Lojasiewicz inequality; convergence; VARIATIONAL INEQUALITY; HILBERT-SPACES; ALGORITHM; OPTIMIZATION;
D O I
10.1186/s13660-017-1504-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the minimization problem of the type L(x, y) = f(x) + R(x, y) + g(y), where f and g are both nonconvex nonsmooth functions, and R is a smooth function we can choose. We present a proximal alternating minimization algorithm with inertial effect. We obtain the convergence by constructing a key function H that guarantees a sufficient decrease property of the iterates. In fact, we prove that if H satisfies the Kurdyka-Lojasiewicz inequality, then every bounded sequence generated by the algorithm converges strongly to a critical point of L.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] A proximal subgradient algorithm with extrapolation for structured nonconvex nonsmooth problems
    Tan Nhat Pham
    Minh N. Dao
    Rakibuzzaman Shah
    Nargiz Sultanova
    Guoyin Li
    Syed Islam
    [J]. Numerical Algorithms, 2023, 94 : 1763 - 1795
  • [42] A proximal subgradient algorithm with extrapolation for structured nonconvex nonsmooth problems
    Pham, Tan Nhat
    Dao, Minh N. N.
    Shah, Rakibuzzaman
    Sultanova, Nargiz
    Li, Guoyin
    Islam, Syed
    [J]. NUMERICAL ALGORITHMS, 2023, 94 (04) : 1763 - 1795
  • [43] Convergence of the proximal bundle algorithm for nonsmooth nonconvex optimization problems
    Monjezi, N. Hoseini
    Nobakhtian, S.
    [J]. OPTIMIZATION LETTERS, 2022, 16 (05) : 1495 - 1511
  • [44] A Proximal Zeroth-Order Algorithm for Nonconvex Nonsmooth Problems
    Kazemi, Ehsan
    Wang, Liqiang
    [J]. 2018 56TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2018, : 64 - 71
  • [45] Convergence of the proximal bundle algorithm for nonsmooth nonconvex optimization problems
    N. Hoseini Monjezi
    S. Nobakhtian
    [J]. Optimization Letters, 2022, 16 : 1495 - 1511
  • [46] General inertial proximal stochastic variance reduction gradient for nonconvex nonsmooth optimization
    Sun, Shuya
    He, Lulu
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)
  • [47] General inertial proximal stochastic variance reduction gradient for nonconvex nonsmooth optimization
    Shuya Sun
    Lulu He
    [J]. Journal of Inequalities and Applications, 2023
  • [48] A proximal alternating linearization method for nonconvex optimization problems
    Li, Dan
    Pang, Li-Ping
    Chen, Shuang
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2014, 29 (04): : 771 - 785
  • [49] Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequality
    Attouch, Hedy
    Bolte, Jerome
    Redont, Patrick
    Soubeyran, Antoine
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2010, 35 (02) : 438 - 457
  • [50] An inertial Douglas-Rachford splitting algorithm for nonconvex and nonsmooth problems
    Feng, Junkai
    Zhang, Haibin
    Zhang, Kaili
    Zhao, Pengfei
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (17):