Proximal alternating linearized minimization for nonconvex and nonsmooth problems

被引:2
|
作者
Jérôme Bolte
Shoham Sabach
Marc Teboulle
机构
[1] TSE (GREMAQ,School of Mathematical Sciences
[2] Université Toulouse I),undefined
[3] Manufacture des Tabacs,undefined
[4] Tel-Aviv University,undefined
来源
Mathematical Programming | 2014年 / 146卷
关键词
Alternating minimization; Block coordinate descent; Gauss-Seidel method; Kurdyka–Łojasiewicz property; Nonconvex-nonsmooth minimization; Proximal forward-backward ; Sparse nonnegative matrix factorization; 90C26; 90C30; 49M37; 65K10; 47J25; 49M27;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a proximal alternating linearized minimization (PALM) algorithm for solving a broad class of nonconvex and nonsmooth minimization problems. Building on the powerful Kurdyka–Łojasiewicz property, we derive a self-contained convergence analysis framework and establish that each bounded sequence generated by PALM globally converges to a critical point. Our approach allows to analyze various classes of nonconvex-nonsmooth problems and related nonconvex proximal forward–backward algorithms with semi-algebraic problem’s data, the later property being shared by many functions arising in a wide variety of fundamental applications. A by-product of our framework also shows that our results are new even in the convex setting. As an illustration of the results, we derive a new and simple globally convergent algorithm for solving the sparse nonnegative matrix factorization problem.
引用
收藏
页码:459 / 494
页数:35
相关论文
共 50 条
  • [1] Proximal alternating linearized minimization for nonconvex and nonsmooth problems
    Bolte, Jerome
    Sabach, Shoham
    Teboulle, Marc
    [J]. MATHEMATICAL PROGRAMMING, 2014, 146 (1-2) : 459 - 494
  • [2] Inertial Proximal Alternating Linearized Minimization (iPALM) for Nonconvex and Nonsmooth Problems
    Pock, Thomas
    Sabach, Shoham
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2016, 9 (04): : 1756 - 1787
  • [3] A generalized inertial proximal alternating linearized minimization method for nonconvex nonsmooth problems
    Wang, Qingsong
    Han, Deren
    [J]. APPLIED NUMERICAL MATHEMATICS, 2023, 189 : 66 - 87
  • [4] Inertial proximal alternating minimization for nonconvex and nonsmooth problems
    Zhang, Yaxuan
    He, Songnian
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [5] Inertial proximal alternating minimization for nonconvex and nonsmooth problems
    Yaxuan Zhang
    Songnian He
    [J]. Journal of Inequalities and Applications, 2017
  • [6] A Stochastic Proximal Alternating Minimization for Nonsmooth and Nonconvex
    Driggs, Derek
    Tang, Junqi
    Liang, Jingwei
    Davies, Mike
    Schonlieb, Carola-Bibiane
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2021, 14 (04): : 1932 - 1970
  • [7] A stochastic two-step inertial Bregman proximal alternating linearized minimization algorithm for nonconvex and nonsmooth problems
    Guo, Chenzheng
    Zhao, Jing
    Dong, Qiao-Li
    [J]. NUMERICAL ALGORITHMS, 2024, 97 (01) : 51 - 100
  • [8] A stochastic two-step inertial Bregman proximal alternating linearized minimization algorithm for nonconvex and nonsmooth problems
    Guo, Chenzheng
    Zhao, Jing
    Dong, Qiao-Li
    [J]. arXiv, 2023,
  • [9] Proximal Linearized Minimization Algorithm for Nonsmooth Nonconvex Minimization Problems in Image Deblurring with Impulse Noise
    Shirong DENG
    Yuchao TANG
    [J]. Journal of Mathematical Research with Applications, 2024, 44 (01) : 122 - 142
  • [10] A PROXIMAL MINIMIZATION ALGORITHM FOR STRUCTURED NONCONVEX AND NONSMOOTH PROBLEMS
    Bot, Radu Ioan
    Csetnek, Erno Robert
    Dang-Khoa Nguyen
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (02) : 1300 - 1328