Pitt's theorem for the Lorentz and Orlicz sequence spaces

被引:4
|
作者
Ausekle, JA [1 ]
Oja, EF [1 ]
机构
[1] TARTU STATE UNIV,EE-202400 TARTU,ESTONIA
关键词
linear operators; sequence spaces; Pitt theorem;
D O I
10.1007/BF02355003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L(X, Y) be the Banach space of all continuous linear operators from X to Y, and let K(X, Y) be the subspace of compact operators. Some versions of the classical Pitt theorem (if p > q, then K(l(p), l(q)) = L(l(p), l(q))) for subspaces of Lorentz and Orlicz sequence spaces are established.
引用
收藏
页码:16 / 21
页数:6
相关论文
共 50 条
  • [21] Generalized Orlicz-Lorentz sequence spaces and corresponding operator ideals
    Gupta, Manjul
    Bhar, Antara
    MATHEMATICA SLOVACA, 2014, 64 (06) : 1475 - 1496
  • [22] Non-squareness properties of Orlicz-Lorentz sequence spaces
    Foralewski, Pawel
    Hudzik, Henryk
    Kolwicz, Pawel
    JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (02) : 605 - 629
  • [23] Local rotundity structure of generalized Orlicz-Lorentz sequence spaces
    Foralewski, Pawel
    Hudzik, Henryk
    Szymaszkiewicz, Lucjan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (09) : 2709 - 2718
  • [24] Kadec-Klee properties of Orlicz-Lorentz sequence spaces equipped with the Orlicz norm
    Cui, Yunan
    Foralewski, Pawel
    Hudzik, Henryk
    Kaczmarek, Radoslaw
    POSITIVITY, 2021, 25 (04) : 1273 - 1294
  • [25] On some geometric properties of generalized Orlicz-Lorentz sequence spaces
    Foralewski, Pawel
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2013, 24 (02): : 346 - 372
  • [26] Isomorphic lp-subspaces in orlicz-lorentz sequence spaces
    Kaminska, A
    Raynaud, Y
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (08) : 2317 - 2327
  • [27] Dual spaces to Orlicz-Lorentz spaces
    Kaminska, Anna
    Lesnik, Karol
    Raynaud, Yves
    STUDIA MATHEMATICA, 2014, 222 (03) : 229 - 261
  • [28] Orlicz–Lorentz function spaces equipped with the Orlicz norm
    Paweł Foralewski
    Joanna Kończak
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [29] Uniform Kadec-Klee properties of Orlicz-Lorentz sequence spaces equipped with the Orlicz norm
    Wang, Di
    Cui, Yunan
    POSITIVITY, 2022, 26 (02)
  • [30] Uniform Kadec-Klee properties of Orlicz-Lorentz sequence spaces equipped with the Orlicz norm
    Di Wang
    Yunan Cui
    Positivity, 2022, 26