On some geometric properties of generalized Orlicz-Lorentz sequence spaces

被引:7
|
作者
Foralewski, Pawel [1 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan, Poland
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2013年 / 24卷 / 02期
关键词
Generalized Orlicz-Lorentz space; Orlicz-Lorentz space; Orlicz function; Luxemburg norm; Kadec-Klee properties; Strict monotonicity; Lower local uniform monotonicity; Upper local uniform monotonicity; Uniform monotonicity; Uniform non-squareness; Non-squareness; MONOTONICITY PROPERTIES; ROTUNDITY STRUCTURE; SYMMETRICAL SPACES; UNIFORM ROTUNDITY; CONVEXITY; CONSTANTS; CONCAVITY; CESARO; POINTS;
D O I
10.1016/j.indag.2012.11.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we continue investigations concerning generalized Orlicz-Lorentz sequence spaces lambda(phi) initiated in the papers of Foralewski et al. (2008) [16,17] (cf. also Foralewski (2011) [11,12]). As we will show in Examples 1.1-1.3 the class of generalized Orlicz-Lorentz sequence spaces is much more wider than the class of classical Orlicz-Lorentz sequence spaces. Moreover, it is shown that if a Musielak-Orlicz function phi satisfies condition delta(lambda)(2), then lambda(phi) has the coordinatewise Kadec-Klee property. Next, monotonicity properties are considered. In order to get sufficient conditions for uniform monotonicity of the space lambda(phi), a strong condition of delta(2) type and the notion of regularity of function phi are introduced. Finally, criteria for non-squareness of lambda(phi), of their subspaces of order continuous elements (lambda(phi))(a) as well as of finite dimensional subspaces lambda(n)(phi) of lambda(phi) are presented. C) 2012 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:346 / 372
页数:27
相关论文
共 50 条
  • [1] On some geometric and topological properties of generalized Orlicz-Lorentz sequence spaces
    Foralewski, Pawe
    Hudzik, Henryk
    Szyrnaszkiewicz, Lucjan
    [J]. MATHEMATISCHE NACHRICHTEN, 2008, 281 (02) : 181 - 198
  • [2] On some geometric properties of generalized Orlicz-Lorentz function spaces
    Foralewski, Pawel
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (17) : 6217 - 6236
  • [3] Some fundamental geometric and topological properties of generalized Orlicz-Lorentz function spaces
    Foralewski, Pawel
    [J]. MATHEMATISCHE NACHRICHTEN, 2011, 284 (8-9) : 1003 - 1023
  • [4] On geometric properties of Orlicz-Lorentz spaces
    Hudzik, H
    Kaminska, A
    Mastylo, M
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1997, 40 (03): : 316 - 329
  • [5] Geometric properties of some Calderon-Lozanovskii spaces and Orlicz-Lorentz spaces
    Hudzik, H
    Kaminska, A
    Mastylo, M
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 1996, 22 (03): : 639 - 663
  • [6] Geometric properties of symmetric spaces with applications to Orlicz-Lorentz spaces
    Cerda, J
    Hudzik, H
    Kaminska, A
    Mastylo, M
    [J]. POSITIVITY, 1998, 2 (04) : 311 - 337
  • [7] Generalized Orlicz-Lorentz sequence spaces and corresponding operator ideals
    Gupta, Manjul
    Bhar, Antara
    [J]. MATHEMATICA SLOVACA, 2014, 64 (06) : 1475 - 1496
  • [8] Local rotundity structure of generalized Orlicz-Lorentz sequence spaces
    Foralewski, Pawel
    Hudzik, Henryk
    Szymaszkiewicz, Lucjan
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (09) : 2709 - 2718
  • [9] ORLICZ-LORENTZ SEQUENCE SPACES EQUIPPED WITH THE ORLICZ NORM
    Cui, Yunan
    Foralewski, Pawel
    Konczak, Joanna
    [J]. ACTA MATHEMATICA SCIENTIA, 2022, 42 (02) : 623 - 652
  • [10] SOME REMARKS ON ORLICZ-LORENTZ SPACES
    KAMINSKA, A
    [J]. MATHEMATISCHE NACHRICHTEN, 1990, 147 : 29 - 38