Generalized Orlicz-Lorentz sequence spaces and corresponding operator ideals

被引:4
|
作者
Gupta, Manjul [1 ]
Bhar, Antara [1 ]
机构
[1] Indian Inst Technol Kanpur, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
关键词
Lorentz sequence spaces; s-numbers of operators; Orlicz function and Orlicz sequence spaces; operator ideals;
D O I
10.2478/s12175-014-0287-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we introduce generalized or vector-valued Orlicz-Lorentz sequence spaces l (p,q,M) (X) on Banach space X with the help of an Orlicz function M and for different positive indices p and q. We study their structural properties and investigate cross and topological duals of these spaces. Moreover these spaces are generalizations of vector-valued Orlicz sequence spaces l (M) (X) for p = q and also Lorentz sequence spaces for M(x) = x (q) for q a parts per thousand yen 1. Lastly we prove that the operator ideals defined with the help of scalar valued sequence spaces l (p,q,M) and additive s-numbers are quasi-Banach operator ideals for p < q and Banach operator ideals for p a parts per thousand yen q. The results of this paper are more general than the work of earlier mathematicians, say A. Pietsch, M. Kato, L. R. Acharya, etc.
引用
收藏
页码:1475 / 1496
页数:22
相关论文
共 50 条
  • [1] Vector valued Orlicz-Lorentz sequence spaces and their operator ideals
    Mohiuddine, S. A.
    Raj, Kuldip
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (02): : 338 - 353
  • [2] Orlicz-Garling sequence spaces of difference operator and their domination in Orlicz-Lorentz spaces
    Charu Sharma
    Syed Abdul Mohiuddine
    Kuldip Raj
    Ali H. Alkhaldi
    [J]. Journal of Inequalities and Applications, 2018
  • [3] Orlicz-Garling sequence spaces of difference operator and their domination in Orlicz-Lorentz spaces
    Sharma, Charu
    Mohiuddine, Syed Abdul
    Raj, Kuldip
    Alkhaldi, Ali H.
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [4] On some geometric properties of generalized Orlicz-Lorentz sequence spaces
    Foralewski, Pawel
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2013, 24 (02): : 346 - 372
  • [5] Local rotundity structure of generalized Orlicz-Lorentz sequence spaces
    Foralewski, Pawel
    Hudzik, Henryk
    Szymaszkiewicz, Lucjan
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (09) : 2709 - 2718
  • [6] ORLICZ-LORENTZ SEQUENCE SPACES EQUIPPED WITH THE ORLICZ NORM
    Cui, Yunan
    Foralewski, Pawel
    Konczak, Joanna
    [J]. ACTA MATHEMATICA SCIENTIA, 2022, 42 (02) : 623 - 652
  • [7] Orlicz-Lorentz Sequence Spaces Equipped with the Orlicz Norm
    Yunan Cui
    Paweł Foralewski
    Joanna Kończak
    [J]. Acta Mathematica Scientia, 2022, 42 : 623 - 652
  • [8] PACKING CONSTANTS IN ORLICZ-LORENTZ SEQUENCE SPACES
    Yan, Yaqiang
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (06): : 2403 - 2428
  • [9] On some geometric and topological properties of generalized Orlicz-Lorentz sequence spaces
    Foralewski, Pawe
    Hudzik, Henryk
    Szyrnaszkiewicz, Lucjan
    [J]. MATHEMATISCHE NACHRICHTEN, 2008, 281 (02) : 181 - 198
  • [10] MONOTONICITY IN ORLICZ-LORENTZ SEQUENCE SPACES EQUIPPED WITH THE ORLICZ NORM
    巩万中
    张道祥
    [J]. Acta Mathematica Scientia, 2016, (06) : 1577 - 1589