PACKING CONSTANTS IN ORLICZ-LORENTZ SEQUENCE SPACES

被引:1
|
作者
Yan, Yaqiang [1 ]
机构
[1] Soochow Univ, Dept Math, Suzhou 215006, Jiangsu, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2011年 / 15卷 / 06期
关键词
Orlicz space; Orlicz-Lorentz space; Packing sphere constant; Kottman constant;
D O I
10.11650/twjm/1500406478
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discussed the upper and lower bounds of packing constants in Orlicz-Lorentz sequence spaces equipped with both the Luxemburg norm and the Orlicz norm. Provided Phi is an element of Delta(2)(0), we showed that the Kottman constant of and lambda(Phi,omega) and lambda(o)(Phi,omega) satisfies max{1/alpha(Phi)(0), 1/alpha'(Phi,omega)} <= K(lambda(Phi,omega)) <= 1/(alpha) over tilde (Phi,omega), max{1/alpha(Phi)(0), 1/alpha ''(Phi,omega)} <= K(lambda(o)(Phi,omega)) <= 1/alpha*(Phi). As a corollary, the packing constant of Lorentz space lambda(p,omega) is 1/(1 + 2(1-1/p)). The packing constants of Orlicz spaces were studied by many researchers. However, there are few results on geometric constants of Lorentz spaces as well as Orlicz-Lorentz spaces. In this paper, we shall study the packing constant in OrliczLorentz sequence spaces lambda(Phi,omega) and lambda(o)(Phi,omega) (equipped with the Luxemburg norm and the Orlicz norm respectively). We will obtain the nontrivial lower and upper bounds of the Kottman constant. Both the technical ideas and the computational methods are practical and can be employed to estimate some other geometric constants in Orlicz-Lorentz spaces.
引用
下载
收藏
页码:2403 / 2428
页数:26
相关论文
共 50 条
  • [1] ORLICZ-LORENTZ SEQUENCE SPACES EQUIPPED WITH THE ORLICZ NORM
    Cui, Yunan
    Foralewski, Pawel
    Konczak, Joanna
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (02) : 623 - 652
  • [2] Orlicz-Lorentz Sequence Spaces Equipped with the Orlicz Norm
    Yunan Cui
    Paweł Foralewski
    Joanna Kończak
    Acta Mathematica Scientia, 2022, 42 : 623 - 652
  • [3] MONOTONICITY IN ORLICZ-LORENTZ SEQUENCE SPACES EQUIPPED WITH THE ORLICZ NORM
    巩万中
    张道祥
    Acta Mathematica Scientia, 2016, (06) : 1577 - 1589
  • [4] MONOTONICITY IN ORLICZ-LORENTZ SEQUENCE SPACES EQUIPPED WITH THE ORLICZ NORM
    Gong, Wanzhong
    Zhang, Daoxiang
    ACTA MATHEMATICA SCIENTIA, 2016, 36 (06) : 1577 - 1589
  • [5] M-constants in Orlicz-Lorentz function spaces
    Cui, Yunan
    Foralewski, Pawel
    Hudzik, Henryk
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (12) : 2556 - 2573
  • [6] M-CONSTANTS IN ORLICZ-LORENTZ SEQUENCE SPACES WITH APPLICATIONS TO FIXED POINT THEORY
    Cui, Yunan
    Foralewski, Pawel
    Hudzik, Henryk
    FIXED POINT THEORY, 2018, 19 (01): : 141 - 166
  • [7] k-rotundity of Orlicz-Lorentz sequence spaces
    Wang, Zichen
    Gong, Wanzhong
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023,
  • [8] Dual spaces to Orlicz-Lorentz spaces
    Kaminska, Anna
    Lesnik, Karol
    Raynaud, Yves
    STUDIA MATHEMATICA, 2014, 222 (03) : 229 - 261
  • [9] Orlicz-Garling sequence spaces of difference operator and their domination in Orlicz-Lorentz spaces
    Charu Sharma
    Syed Abdul Mohiuddine
    Kuldip Raj
    Ali H. Alkhaldi
    Journal of Inequalities and Applications, 2018
  • [10] COMPARISON OF ORLICZ-LORENTZ SPACES
    MONTGOMERYSMITH, SJ
    STUDIA MATHEMATICA, 1992, 103 (02) : 161 - 189