PACKING CONSTANTS IN ORLICZ-LORENTZ SEQUENCE SPACES

被引:1
|
作者
Yan, Yaqiang [1 ]
机构
[1] Soochow Univ, Dept Math, Suzhou 215006, Jiangsu, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2011年 / 15卷 / 06期
关键词
Orlicz space; Orlicz-Lorentz space; Packing sphere constant; Kottman constant;
D O I
10.11650/twjm/1500406478
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discussed the upper and lower bounds of packing constants in Orlicz-Lorentz sequence spaces equipped with both the Luxemburg norm and the Orlicz norm. Provided Phi is an element of Delta(2)(0), we showed that the Kottman constant of and lambda(Phi,omega) and lambda(o)(Phi,omega) satisfies max{1/alpha(Phi)(0), 1/alpha'(Phi,omega)} <= K(lambda(Phi,omega)) <= 1/(alpha) over tilde (Phi,omega), max{1/alpha(Phi)(0), 1/alpha ''(Phi,omega)} <= K(lambda(o)(Phi,omega)) <= 1/alpha*(Phi). As a corollary, the packing constant of Lorentz space lambda(p,omega) is 1/(1 + 2(1-1/p)). The packing constants of Orlicz spaces were studied by many researchers. However, there are few results on geometric constants of Lorentz spaces as well as Orlicz-Lorentz spaces. In this paper, we shall study the packing constant in OrliczLorentz sequence spaces lambda(Phi,omega) and lambda(o)(Phi,omega) (equipped with the Luxemburg norm and the Orlicz norm respectively). We will obtain the nontrivial lower and upper bounds of the Kottman constant. Both the technical ideas and the computational methods are practical and can be employed to estimate some other geometric constants in Orlicz-Lorentz spaces.
引用
下载
收藏
页码:2403 / 2428
页数:26
相关论文
共 50 条
  • [41] Convolutions, Tensor Products and Multipliers of the Orlicz-Lorentz Spaces
    Li, Hongliang
    Chen, Jiecheng
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2015, 36 (03) : 467 - 484
  • [42] EMBEDDINGS OF ORLICZ-LORENTZ SPACES INTO L1
    Prochno, J.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2021, 32 (01) : 59 - 70
  • [43] On the Moduli and Characteristic of Monotonicity in Orlicz-Lorentz Function Spaces
    Foralewski, Pawel
    Hudzik, Henryk
    Kaczmarek, Radoslaw
    Krbec, Miroslav
    Wojtowicz, Marek
    JOURNAL OF CONVEX ANALYSIS, 2013, 20 (04) : 955 - 970
  • [44] Daugavet and diameter two properties in Orlicz-Lorentz spaces
    Kaminska, Anna
    Lee, Han Ju
    Tag, Hyung-Joon
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 529 (02)
  • [45] Atomic decompositions of weak Orlicz-Lorentz martingale spaces
    Zhang, Chuanzhou
    Zhong, Mingming
    Zhang, Xueying
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [46] Compact weighted composition operators on Orlicz-Lorentz spaces
    Arora, S. C.
    Datt, Gopal k
    ACTA SCIENTIARUM MATHEMATICARUM, 2011, 77 (3-4): : 567 - 578
  • [47] Atomic decompositions of weak Orlicz-Lorentz martingale spaces
    Chuanzhou Zhang
    Mingming Zhong
    Xueying Zhang
    Journal of Inequalities and Applications, 2014
  • [48] Convolutions, Tensor Products and Multipliers of the Orlicz-Lorentz Spaces
    Hongliang LI
    Jiecheng CHEN
    Chinese Annals of Mathematics,Series B, 2015, 36 (03) : 467 - 484
  • [49] The Banach-Saks Properties in Orlicz-Lorentz Spaces
    Kaminska, Anna
    Lee, Han Ju
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [50] Compact weighted composition operators on Orlicz-Lorentz spaces
    S. C. Arora
    Gopal Datt
    Acta Scientiarum Mathematicarum, 2011, 77 (3-4): : 567 - 578