PACKING CONSTANTS IN ORLICZ-LORENTZ SEQUENCE SPACES

被引:1
|
作者
Yan, Yaqiang [1 ]
机构
[1] Soochow Univ, Dept Math, Suzhou 215006, Jiangsu, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2011年 / 15卷 / 06期
关键词
Orlicz space; Orlicz-Lorentz space; Packing sphere constant; Kottman constant;
D O I
10.11650/twjm/1500406478
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discussed the upper and lower bounds of packing constants in Orlicz-Lorentz sequence spaces equipped with both the Luxemburg norm and the Orlicz norm. Provided Phi is an element of Delta(2)(0), we showed that the Kottman constant of and lambda(Phi,omega) and lambda(o)(Phi,omega) satisfies max{1/alpha(Phi)(0), 1/alpha'(Phi,omega)} <= K(lambda(Phi,omega)) <= 1/(alpha) over tilde (Phi,omega), max{1/alpha(Phi)(0), 1/alpha ''(Phi,omega)} <= K(lambda(o)(Phi,omega)) <= 1/alpha*(Phi). As a corollary, the packing constant of Lorentz space lambda(p,omega) is 1/(1 + 2(1-1/p)). The packing constants of Orlicz spaces were studied by many researchers. However, there are few results on geometric constants of Lorentz spaces as well as Orlicz-Lorentz spaces. In this paper, we shall study the packing constant in OrliczLorentz sequence spaces lambda(Phi,omega) and lambda(o)(Phi,omega) (equipped with the Luxemburg norm and the Orlicz norm respectively). We will obtain the nontrivial lower and upper bounds of the Kottman constant. Both the technical ideas and the computational methods are practical and can be employed to estimate some other geometric constants in Orlicz-Lorentz spaces.
引用
下载
收藏
页码:2403 / 2428
页数:26
相关论文
共 50 条
  • [31] Uniformly normal structure of Orlicz-Lorentz spaces
    Kaminska, A
    Lin, PK
    INTERACTION BETWEEN FUNCTIONAL ANALYSIS, HARMONIC ANALYSIS, AND PROBABILITY, 1996, 175 : 229 - 238
  • [32] THE RIESZ CONVERGENCE PROPERTY ON WEIGHTED LORENTZ SPACES AND ORLICZ-LORENTZ SPACES
    Li, Hongliang
    QUAESTIONES MATHEMATICAE, 2013, 36 (02) : 181 - 196
  • [33] Uniform Kadec-Klee properties of Orlicz-Lorentz sequence spaces equipped with the Orlicz norm
    Wang, Di
    Cui, Yunan
    POSITIVITY, 2022, 26 (02)
  • [34] Gateaux differentiability in Orlicz-Lorentz spaces and applications
    Levis, Fabian E.
    Cuenya, Hector H.
    MATHEMATISCHE NACHRICHTEN, 2007, 280 (11) : 1282 - 1296
  • [35] Uniform Kadec-Klee properties of Orlicz-Lorentz sequence spaces equipped with the Orlicz norm
    Di Wang
    Yunan Cui
    Positivity, 2022, 26
  • [36] Points of monotonicity in Orlicz-Lorentz function spaces
    Gong, Wanzhong
    Shi, Zhongrui
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (05) : 1300 - 1317
  • [37] EXTREME-POINTS IN ORLICZ-LORENTZ SPACES
    KAMINSKA, A
    ARCHIV DER MATHEMATIK, 1990, 55 (02) : 173 - 180
  • [38] ROTUNDITY AND UNIFORM ROTUNDITY OF ORLICZ-LORENTZ SPACES WITH THE ORLICZ NORM
    Wang, Jincai
    Chen, Yi
    HOUSTON JOURNAL OF MATHEMATICS, 2012, 38 (01): : 131 - 151
  • [39] Geometric properties of symmetric spaces with applications to Orlicz-Lorentz spaces
    Cerda, J
    Hudzik, H
    Kaminska, A
    Mastylo, M
    POSITIVITY, 1998, 2 (04) : 311 - 337
  • [40] M-IDEAL PROPERTIES IN ORLICZ-LORENTZ SPACES
    Kaminska, Anna
    Lee, Han Ju
    Tag, Hyung-Joon
    HOUSTON JOURNAL OF MATHEMATICS, 2019, 45 (01): : 213 - 232