Dual spaces to Orlicz-Lorentz spaces

被引:19
|
作者
Kaminska, Anna [1 ]
Lesnik, Karol [2 ]
Raynaud, Yves [3 ,4 ]
机构
[1] Univ Memphis, Dept Math, Memphis, TN 38152 USA
[2] Poznan Univ Tech, Fac Elect Engn, Inst Math, PL-60965 Poznan, Poland
[3] Univ Paris 06, Inst Mathemat Jussieu, F-75252 Paris 05, France
[4] CNRS, F-75252 Paris 05, France
关键词
Orlicz Lorentz spaces; Lorentz spaces; dual spaces; level function; Calderan Lozanovskii spaces; r.i; spaces; LOZANOVSKII;
D O I
10.4064/sm222-3-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an Orlicz function co and a decreasing weight omega, two intrinsic exact descriptions are presented for the norm in the Kothe dual of the Orlicz-Lorentz function space Lambda(phi,omega) or the sequence space lambda(phi,omega) equipped with either the Luxemburg or Amemiya norms. The first description is via the modular inf{integral phi(*)(f*/vertical bar g vertical bar)vertical bar g vertical bar : g< w}, where f * is the decreasing rearrangement of f, < denotes submajorization, and phi(*) is the complementary function to phi. The second description is in terms of the modular integral(1) phi co.((f *) /w)w, where (f*)(0) is Halperin's level function of f* with respect to w. That these two descriptions are equiva ent results from the identity inf{integral psi(f*/vertical bar g vertical bar)vertical bar g vertical bar : g < w} = integral(I) psi((f*)(0)/omega) omega, valid for any measurable function f and any Orlicz function 0. An analogous identity and dual representations are also presented for sequence spaces.
引用
收藏
页码:229 / 261
页数:33
相关论文
共 50 条
  • [1] COMPARISON OF ORLICZ-LORENTZ SPACES
    MONTGOMERYSMITH, SJ
    [J]. STUDIA MATHEMATICA, 1992, 103 (02) : 161 - 189
  • [2] SOME REMARKS ON ORLICZ-LORENTZ SPACES
    KAMINSKA, A
    [J]. MATHEMATISCHE NACHRICHTEN, 1990, 147 : 29 - 38
  • [3] Localization and extrapolation in Orlicz-Lorentz spaces
    Cruz-Uribe, D
    Krbec, M
    [J]. FUNCTION SPACES, INTERPOLATION THEORY AND RELATED TOPICS, PROCEEDINGS, 2002, : 273 - 283
  • [4] Orlicz-Lorentz Hardy martingale spaces
    Hao, Zhiwei
    Li, Libo
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 482 (01)
  • [5] Trigonometric series in the Orlicz-Lorentz spaces
    V. B. Simonov
    [J]. Russian Mathematics, 2007, 51 (6) : 61 - 74
  • [6] Some Rotundities of Orlicz-Lorentz Spaces
    Gong, Wan Zhong
    Wang, Peng
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (08) : 1893 - 1919
  • [7] On geometric properties of Orlicz-Lorentz spaces
    Hudzik, H
    Kaminska, A
    Mastylo, M
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1997, 40 (03): : 316 - 329
  • [8] Trigonometric Series in the Orlicz-Lorentz Spaces
    Simonov, V. B.
    [J]. RUSSIAN MATHEMATICS, 2007, 51 (06) : 61 - 74
  • [9] On Disjointly Homogeneous Orlicz-Lorentz Spaces
    Astashkin, S., V
    Strakhov, S., I
    [J]. MATHEMATICAL NOTES, 2020, 108 (5-6) : 631 - 642
  • [10] Orlicz-Lorentz spaces and their multiplication operators
    Erlin Castillo, Rene
    Camilo Chaparro, Hector
    Ramos Fernandez, Julio Cesar
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (05): : 991 - 1009