K-UR, K-LUR and K-R are the generalizations of UR, LUR and R respectively, which are of great significance in Banach space theory. While in Orlicz-Lorentz function space Lambda phi,omega circle[0,gamma)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda_{\varphi,\omega}<^>{\circ}[0,\gamma)$$\end{document} equipped with the Orlicz norm, the research methods of K-UR, K-LUR and K-R are much more complicated than those of UR, LUR and R. In this paper we obtain some criteria of K-UR, K-LUR and K-R of Lambda phi,omega circle[0,gamma)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda_{\varphi,\omega}<^>{\circ}[0,\gamma)$$\end{document} by means of the norm of dual space and H mu property of Lambda phi,omega circle[0,gamma)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda_{\varphi,\omega}<^>{\circ}[0,\gamma)$$\end{document}.