Some Rotundities of Orlicz-Lorentz Spaces

被引:0
|
作者
Gong, Wan Zhong [1 ]
Wang, Peng [1 ]
机构
[1] Anhui Normal Univ, Dept Math, Wuhu 241000, Peoples R China
关键词
Orlicz-Lorentz space; Orlicz norm; k-uniform rotundity; locally k-uniform rotundity; k-rotundity; K-UNIFORM ROTUNDITY; GEOMETRIC-PROPERTIES;
D O I
10.1007/s10114-024-2551-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
K-UR, K-LUR and K-R are the generalizations of UR, LUR and R respectively, which are of great significance in Banach space theory. While in Orlicz-Lorentz function space Lambda phi,omega circle[0,gamma)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda_{\varphi,\omega}<^>{\circ}[0,\gamma)$$\end{document} equipped with the Orlicz norm, the research methods of K-UR, K-LUR and K-R are much more complicated than those of UR, LUR and R. In this paper we obtain some criteria of K-UR, K-LUR and K-R of Lambda phi,omega circle[0,gamma)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda_{\varphi,\omega}<^>{\circ}[0,\gamma)$$\end{document} by means of the norm of dual space and H mu property of Lambda phi,omega circle[0,gamma)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda_{\varphi,\omega}<^>{\circ}[0,\gamma)$$\end{document}.
引用
收藏
页码:1893 / 1919
页数:27
相关论文
共 50 条