On some geometric properties of generalized Orlicz-Lorentz sequence spaces

被引:7
|
作者
Foralewski, Pawel [1 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan, Poland
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2013年 / 24卷 / 02期
关键词
Generalized Orlicz-Lorentz space; Orlicz-Lorentz space; Orlicz function; Luxemburg norm; Kadec-Klee properties; Strict monotonicity; Lower local uniform monotonicity; Upper local uniform monotonicity; Uniform monotonicity; Uniform non-squareness; Non-squareness; MONOTONICITY PROPERTIES; ROTUNDITY STRUCTURE; SYMMETRICAL SPACES; UNIFORM ROTUNDITY; CONVEXITY; CONSTANTS; CONCAVITY; CESARO; POINTS;
D O I
10.1016/j.indag.2012.11.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we continue investigations concerning generalized Orlicz-Lorentz sequence spaces lambda(phi) initiated in the papers of Foralewski et al. (2008) [16,17] (cf. also Foralewski (2011) [11,12]). As we will show in Examples 1.1-1.3 the class of generalized Orlicz-Lorentz sequence spaces is much more wider than the class of classical Orlicz-Lorentz sequence spaces. Moreover, it is shown that if a Musielak-Orlicz function phi satisfies condition delta(lambda)(2), then lambda(phi) has the coordinatewise Kadec-Klee property. Next, monotonicity properties are considered. In order to get sufficient conditions for uniform monotonicity of the space lambda(phi), a strong condition of delta(2) type and the notion of regularity of function phi are introduced. Finally, criteria for non-squareness of lambda(phi), of their subspaces of order continuous elements (lambda(phi))(a) as well as of finite dimensional subspaces lambda(n)(phi) of lambda(phi) are presented. C) 2012 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:346 / 372
页数:27
相关论文
共 50 条
  • [21] Dual spaces to Orlicz-Lorentz spaces
    Kaminska, Anna
    Lesnik, Karol
    Raynaud, Yves
    [J]. STUDIA MATHEMATICA, 2014, 222 (03) : 229 - 261
  • [22] Uniform Kadec-Klee properties of Orlicz-Lorentz sequence spaces equipped with the Orlicz norm
    Wang, Di
    Cui, Yunan
    [J]. POSITIVITY, 2022, 26 (02)
  • [23] Orlicz-Garling sequence spaces of difference operator and their domination in Orlicz-Lorentz spaces
    Charu Sharma
    Syed Abdul Mohiuddine
    Kuldip Raj
    Ali H. Alkhaldi
    [J]. Journal of Inequalities and Applications, 2018
  • [24] Uniform Kadec-Klee properties of Orlicz-Lorentz sequence spaces equipped with the Orlicz norm
    Di Wang
    Yunan Cui
    [J]. Positivity, 2022, 26
  • [25] COMPARISON OF ORLICZ-LORENTZ SPACES
    MONTGOMERYSMITH, SJ
    [J]. STUDIA MATHEMATICA, 1992, 103 (02) : 161 - 189
  • [26] Orlicz-Garling sequence spaces of difference operator and their domination in Orlicz-Lorentz spaces
    Sharma, Charu
    Mohiuddine, Syed Abdul
    Raj, Kuldip
    Alkhaldi, Ali H.
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [27] Vector valued Orlicz-Lorentz sequence spaces and their operator ideals
    Mohiuddine, S. A.
    Raj, Kuldip
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (02): : 338 - 353
  • [28] Rotundity and uniform rotundity of Orlicz-Lorentz sequence spaces equipped with the Orlicz norm
    Wang, Jincai
    Ning, Zhe
    [J]. MATHEMATISCHE NACHRICHTEN, 2011, 284 (17-18) : 2297 - 2311
  • [29] Isomorphic lp-subspaces in orlicz-lorentz sequence spaces
    Kaminska, A
    Raynaud, Y
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (08) : 2317 - 2327
  • [30] M-IDEAL PROPERTIES IN ORLICZ-LORENTZ SPACES
    Kaminska, Anna
    Lee, Han Ju
    Tag, Hyung-Joon
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2019, 45 (01): : 213 - 232