On some geometric properties of generalized Orlicz-Lorentz sequence spaces

被引:7
|
作者
Foralewski, Pawel [1 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan, Poland
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2013年 / 24卷 / 02期
关键词
Generalized Orlicz-Lorentz space; Orlicz-Lorentz space; Orlicz function; Luxemburg norm; Kadec-Klee properties; Strict monotonicity; Lower local uniform monotonicity; Upper local uniform monotonicity; Uniform monotonicity; Uniform non-squareness; Non-squareness; MONOTONICITY PROPERTIES; ROTUNDITY STRUCTURE; SYMMETRICAL SPACES; UNIFORM ROTUNDITY; CONVEXITY; CONSTANTS; CONCAVITY; CESARO; POINTS;
D O I
10.1016/j.indag.2012.11.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we continue investigations concerning generalized Orlicz-Lorentz sequence spaces lambda(phi) initiated in the papers of Foralewski et al. (2008) [16,17] (cf. also Foralewski (2011) [11,12]). As we will show in Examples 1.1-1.3 the class of generalized Orlicz-Lorentz sequence spaces is much more wider than the class of classical Orlicz-Lorentz sequence spaces. Moreover, it is shown that if a Musielak-Orlicz function phi satisfies condition delta(lambda)(2), then lambda(phi) has the coordinatewise Kadec-Klee property. Next, monotonicity properties are considered. In order to get sufficient conditions for uniform monotonicity of the space lambda(phi), a strong condition of delta(2) type and the notion of regularity of function phi are introduced. Finally, criteria for non-squareness of lambda(phi), of their subspaces of order continuous elements (lambda(phi))(a) as well as of finite dimensional subspaces lambda(n)(phi) of lambda(phi) are presented. C) 2012 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:346 / 372
页数:27
相关论文
共 50 条
  • [11] Orlicz-Lorentz Sequence Spaces Equipped with the Orlicz Norm
    Yunan Cui
    Paweł Foralewski
    Joanna Kończak
    [J]. Acta Mathematica Scientia, 2022, 42 : 623 - 652
  • [12] Some Rotundities of Orlicz-Lorentz Spaces
    Gong, Wan Zhong
    Wang, Peng
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (08) : 1893 - 1919
  • [13] PACKING CONSTANTS IN ORLICZ-LORENTZ SEQUENCE SPACES
    Yan, Yaqiang
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (06): : 2403 - 2428
  • [14] Non-squareness properties of Orlicz-Lorentz sequence spaces
    Foralewski, Pawel
    Hudzik, Henryk
    Kolwicz, Pawel
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (02) : 605 - 629
  • [15] MONOTONICITY IN ORLICZ-LORENTZ SEQUENCE SPACES EQUIPPED WITH THE ORLICZ NORM
    巩万中
    张道祥
    [J]. Acta Mathematica Scientia, 2016, (06) : 1577 - 1589
  • [16] MONOTONICITY IN ORLICZ-LORENTZ SEQUENCE SPACES EQUIPPED WITH THE ORLICZ NORM
    巩万中
    张道祥
    [J]. Acta Mathematica Scientia(English Series)., 2016, 36 (06) - 1589
  • [17] MONOTONICITY IN ORLICZ-LORENTZ SEQUENCE SPACES EQUIPPED WITH THE ORLICZ NORM
    Gong, Wanzhong
    Zhang, Daoxiang
    [J]. ACTA MATHEMATICA SCIENTIA, 2016, 36 (06) : 1577 - 1589
  • [18] Some properties and interpolation theorems in weak Orlicz-Lorentz spaces
    Fan, L-P
    Ma, C-B
    [J]. ACTA MATHEMATICA HUNGARICA, 2021, 164 (01) : 28 - 45
  • [19] Kadec-Klee properties of Orlicz-Lorentz sequence spaces equipped with the Orlicz norm
    Cui, Yunan
    Foralewski, Pawel
    Hudzik, Henryk
    Kaczmarek, Radoslaw
    [J]. POSITIVITY, 2021, 25 (04) : 1273 - 1294
  • [20] k-rotundity of Orlicz-Lorentz sequence spaces
    Wang, Zichen
    Gong, Wanzhong
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023,