Non-squareness properties of Orlicz-Lorentz sequence spaces

被引:30
|
作者
Foralewski, Pawel [1 ]
Hudzik, Henryk [1 ]
Kolwicz, Pawel [2 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan, Poland
[2] Poznan Univ Tech, Inst Math, Elect Fac, PL-60965 Poznan, Poland
关键词
Uniform non-squareness; Locally uniform non-squareness; Non-squareness; Orlicz-Lorentz space; Lorentz space; Orlicz space; Strict monotonicity; Uniform monotonicity; Super-reflexivity; Fixed point property; GEOMETRIC-PROPERTIES; ROTUNDITY STRUCTURE; SYMMETRICAL SPACES; MONOTONICITY; CONVEXITY; CONSTANTS; CESARO; POINTS;
D O I
10.1016/j.jfa.2012.10.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper criteria for non-squareness properties (non-squareness, local uniform non-squareness and uniform non-squareness) of Orlicz-Lorentz sequence spaces lambda(phi,omega) and of their n-dimensional subspaces lambda(n)(phi,omega) (n >= 2) as well as of the subspaces (lambda(phi,omega))(a) of all order continuous elements in lambda(phi,omega) are given. Since degenerate Orlicz functions phi and degenerate weight sequences w are also admitted, these investigations concern the most possible wide class of Orlicz-Lorentz sequence spaces. Finally, as immediate consequences, criteria for all non-squareness properties of Orlicz sequence spaces, which complete the results of Sundaresan (1966) [53], Hudzik (1985) [23], Hudzik (1985) [24], are deduced. Iris worth recalling that uniform non-squareness is an important property, because it implies super-reflexivity as well as the fixed point property (see James (1964) [31], James (1972) [33] and Garcia-Falser et al. (2006) [19]). (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:605 / 629
页数:25
相关论文
共 50 条
  • [1] Non-squareness properties of Orlicz-Lorentz function spaces
    Paweł Foralewski
    Henryk Hudzik
    Paweł Kolwicz
    [J]. Journal of Inequalities and Applications, 2013
  • [2] Non-squareness properties of Orlicz-Lorentz function spaces
    Foralewski, Pawel
    Hudzik, Henryk
    Kolwicz, Pawel
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [3] Local uniform non-squareness of Orlicz-Lorentz function spaces
    Foralewski, Pawel
    Konczak, Joanna
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) : 3425 - 3443
  • [4] Uniformly normal structure and uniform non-squareness of Orlicz-Lorentz function spaces endowed with the Orlicz norm
    Chen, Bowen
    Gong, Wanzhong
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2021, 12 (02)
  • [5] Local uniform non-squareness of Orlicz–Lorentz function spaces
    Paweł Foralewski
    Joanna Kończak
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 3425 - 3443
  • [6] Uniform Non-squareness and Flatness in Orlicz Spaces
    王玉文
    [J]. Journal of Mathematical Research with Applications, 1984, (04) : 94 - 94
  • [7] Uniformly normal structure and uniform non-squareness of Orlicz–Lorentz function spaces endowed with the Orlicz norm
    Bowen Chen
    Wanzhong Gong
    [J]. Annals of Functional Analysis, 2021, 12
  • [8] ORLICZ-LORENTZ SEQUENCE SPACES EQUIPPED WITH THE ORLICZ NORM
    Cui, Yunan
    Foralewski, Pawel
    Konczak, Joanna
    [J]. ACTA MATHEMATICA SCIENTIA, 2022, 42 (02) : 623 - 652
  • [9] Orlicz-Lorentz Sequence Spaces Equipped with the Orlicz Norm
    Yunan Cui
    Paweł Foralewski
    Joanna Kończak
    [J]. Acta Mathematica Scientia, 2022, 42 : 623 - 652
  • [10] PACKING CONSTANTS IN ORLICZ-LORENTZ SEQUENCE SPACES
    Yan, Yaqiang
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (06): : 2403 - 2428