On some geometric properties of generalized Orlicz-Lorentz sequence spaces

被引:7
|
作者
Foralewski, Pawel [1 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan, Poland
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2013年 / 24卷 / 02期
关键词
Generalized Orlicz-Lorentz space; Orlicz-Lorentz space; Orlicz function; Luxemburg norm; Kadec-Klee properties; Strict monotonicity; Lower local uniform monotonicity; Upper local uniform monotonicity; Uniform monotonicity; Uniform non-squareness; Non-squareness; MONOTONICITY PROPERTIES; ROTUNDITY STRUCTURE; SYMMETRICAL SPACES; UNIFORM ROTUNDITY; CONVEXITY; CONSTANTS; CONCAVITY; CESARO; POINTS;
D O I
10.1016/j.indag.2012.11.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we continue investigations concerning generalized Orlicz-Lorentz sequence spaces lambda(phi) initiated in the papers of Foralewski et al. (2008) [16,17] (cf. also Foralewski (2011) [11,12]). As we will show in Examples 1.1-1.3 the class of generalized Orlicz-Lorentz sequence spaces is much more wider than the class of classical Orlicz-Lorentz sequence spaces. Moreover, it is shown that if a Musielak-Orlicz function phi satisfies condition delta(lambda)(2), then lambda(phi) has the coordinatewise Kadec-Klee property. Next, monotonicity properties are considered. In order to get sufficient conditions for uniform monotonicity of the space lambda(phi), a strong condition of delta(2) type and the notion of regularity of function phi are introduced. Finally, criteria for non-squareness of lambda(phi), of their subspaces of order continuous elements (lambda(phi))(a) as well as of finite dimensional subspaces lambda(n)(phi) of lambda(phi) are presented. C) 2012 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:346 / 372
页数:27
相关论文
共 50 条
  • [31] The Banach-Saks Properties in Orlicz-Lorentz Spaces
    Kaminska, Anna
    Lee, Han Ju
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [32] SOME GEOMETRIC-PROPERTIES OF LORENTZ-ORLICZ SPACES
    LIN, PK
    SUN, HY
    [J]. ARCHIV DER MATHEMATIK, 1995, 64 (06) : 500 - 511
  • [33] Localization and extrapolation in Orlicz-Lorentz spaces
    Cruz-Uribe, D
    Krbec, M
    [J]. FUNCTION SPACES, INTERPOLATION THEORY AND RELATED TOPICS, PROCEEDINGS, 2002, : 273 - 283
  • [34] Orlicz-Lorentz Hardy martingale spaces
    Hao, Zhiwei
    Li, Libo
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 482 (01)
  • [35] Trigonometric series in the Orlicz-Lorentz spaces
    V. B. Simonov
    [J]. Russian Mathematics, 2007, 51 (6) : 61 - 74
  • [36] On Disjointly Homogeneous Orlicz-Lorentz Spaces
    Astashkin, S., V
    Strakhov, S., I
    [J]. MATHEMATICAL NOTES, 2020, 108 (5-6) : 631 - 642
  • [37] Trigonometric Series in the Orlicz-Lorentz Spaces
    Simonov, V. B.
    [J]. RUSSIAN MATHEMATICS, 2007, 51 (06) : 61 - 74
  • [38] Orlicz-Lorentz spaces and their multiplication operators
    Erlin Castillo, Rene
    Camilo Chaparro, Hector
    Ramos Fernandez, Julio Cesar
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (05): : 991 - 1009
  • [39] Orlicz-Lorentz function spaces equipped with the Orlicz norm
    Foralewski, Pawel
    Konczak, Joanna
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (03)
  • [40] Non-squareness properties of Orlicz-Lorentz function spaces
    Paweł Foralewski
    Henryk Hudzik
    Paweł Kolwicz
    [J]. Journal of Inequalities and Applications, 2013