MNP: R package for fitting the multinomial probit model

被引:0
|
作者
Imai, K [1 ]
van Dyk, DA
机构
[1] Princeton Univ, Dept Polit, Princeton, NJ 08544 USA
[2] Univ Calif Irvine, Irvine, CA USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2005年 / 14卷 / 03期
关键词
data augmentation; discrete choice models; Markov chain Monte Carlo; preference data;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
MNP is a publicly available R package that fits the Bayesian multinomial probit model via Markov chain Monte Carlo. The multinomial probit model is often used to analyze the discrete choices made by individuals recorded in survey data. Examples where the multinomial probit model may be useful include the analysis of product choice by consumers in market research and the analysis of candidate or party choice by voters in electoral studies. The MNP software can also fit the model with different choice sets for each individual, and complete or partial individual choice orderings of the available alternatives from the choice set. The estimation is based on the efficient marginal data augmentation algorithm that is developed by Imai and van Dyk (2005).
引用
收藏
页数:32
相关论文
共 50 条
  • [31] A Bayesian mixed logit-probit model for multinomial choice
    Burda, Martin
    Harding, Matthew
    Hausman, Jerry
    JOURNAL OF ECONOMETRICS, 2008, 147 (02) : 232 - 246
  • [32] A BAYESIAN MULTINOMIAL PROBIT MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA
    Fong, Duncan K. H.
    Kim, Sunghoon
    Chen, Zhe
    DeSarbo, Wayne S.
    PSYCHOMETRIKA, 2016, 81 (01) : 161 - 183
  • [33] A hybrid Markov chain for the Bayesian analysis of the multinomial probit model
    Agostino Nobile
    Statistics and Computing, 1998, 8 : 229 - 242
  • [34] Generalized multinomial probit Model: Accommodating constrained random parameters
    Paleti, Rajesh
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2018, 118 : 248 - 262
  • [35] A Bayesian Multinomial Probit MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA
    Duncan K. H. Fong
    Sunghoon Kim
    Zhe Chen
    Wayne S. DeSarbo
    Psychometrika, 2016, 81 : 161 - 183
  • [36] The dynamic invariant multinomial probit model: Identification, pretesting and estimation
    Liesenfeld, Roman
    Richard, Jean-Francois
    JOURNAL OF ECONOMETRICS, 2010, 155 (02) : 117 - 127
  • [37] A Bayesian analysis of the multinomial probit model with fully identified parameters
    McCulloch, RE
    Polson, NG
    Rossi, PE
    JOURNAL OF ECONOMETRICS, 2000, 99 (01) : 173 - 193
  • [38] hmmm: An R Package for Hierarchical Multinomial Marginal Models
    Colombi, Roberto
    Giordano, Sabrina
    Cazzaro, Manuela
    JOURNAL OF STATISTICAL SOFTWARE, 2014, 59 (11):
  • [39] Fitting the generalized multinomial logit model in Stata
    Gu, Yuanyuan
    Hole, Arne Risa
    Knox, Stephanie
    STATA JOURNAL, 2013, 13 (02): : 382 - 397
  • [40] An R package for model fitting, model selection and the simulation for longitudinal data with dropout missingness
    Xu, Cong
    Li, Zheng
    Xue, Yuan
    Zhang, Lijun
    Wang, Ming
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (09) : 2812 - 2829